3. langgraph中的react agent使用 (在react agent添加系统提示)

环境准备

确保你已经安装了以下库:

  • langchain
  • langchain_openai
  • langgraph

你可以使用以下命令进行安装:

bash 复制代码
pip install langchain langchain_openai langgraph

代码实现

1. 初始化模型

首先,我们需要初始化智谱AI的聊天模型。

python 复制代码
from langchain_openai import ChatOpenAI

model = ChatOpenAI(
    temperature=0,
    model="glm-4-plus",
    openai_api_key="your_api_key",
    openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)

2. 定义自定义工具

我们将使用一个自定义工具来返回纽约和旧金山的天气信息。

python 复制代码
from typing import Literal
from langchain_core.tools import tool

@tool
def get_weather(city: Literal["nyc", "sf"]):
    """使用此工具获取天气信息."""
    if city == "nyc":
        return "It might be cloudy in nyc"
    elif city == "sf":
        return "It's always sunny in sf"
    else:
        raise AssertionError("Unknown city")

tools = [get_weather]

3. 添加系统提示

我们可以添加一个系统提示来指定响应的语言。

python 复制代码
prompt = "Respond in Italian"

4. 定义执行图

使用langgraph库创建一个React代理。

python 复制代码
from langgraph.prebuilt import create_react_agent

graph = create_react_agent(model, tools=tools, state_modifier=prompt)

5. 定义输出流处理函数

定义一个函数来处理输出流。

python 复制代码
def print_stream(stream):
    for s in stream:
        message = s["messages"][-1]
        if isinstance(message, tuple):
            print(message)
        else:
            message.pretty_print()

6. 运行并打印结果

输入一个用户消息并运行模型,打印输出结果。

python 复制代码
inputs = {"messages": [("user", "What's the weather in NYC?")]}

print_stream(graph.stream(inputs, stream_mode="values"))

输出结果如下:

复制代码
================================[1m Human Message [0m=================================
What's the weather in NYC?
================================[1m Ai Message [0m==================================
Tool Calls:
  get_weather (call_9208187369440656653)
 Call ID: call_9208187369440656653
  Args:
    city: nyc
================================[1m Tool Message [0m=================================
Name: get_weather

It might be cloudy in nyc
================================[1m Ai Message [0m==================================

Il tempo a New York potrebbe essere nuvoloso.

参考链接:https://langchain-ai.github.io/langgraph/how-tos/create-react-agent-system-prompt/

相关推荐
码农三叔18 分钟前
(11-4-01)完整人形机器人的设计与实现案例:机器人的站立与行走
人工智能·嵌入式硬件·机器人·人机交互·人形机器人
大模型玩家七七19 分钟前
效果评估:如何判断一个祝福 AI 是否“走心”
android·java·开发语言·网络·人工智能·batch
OpenLoong 开源社区20 分钟前
开源发布 | 从青龙Nano到青龙Mini:共建开源生态,首次亮相产教融合场景
人工智能·开源
水木姚姚22 分钟前
AI编程画马(含AI辅助创作)
人工智能·ai编程
明天有专业课23 分钟前
RAG的基石-数据加载
langchain·aigc
老纪的技术唠嗑局28 分钟前
uv × pyseekdb:把 RAG 环境与检索落地成本降到最低
人工智能
m0_6038887128 分钟前
Chatting with Images for Introspective Visual Thinking
人工智能·计算机视觉·ai·论文速览
MicRabbit29 分钟前
openClaw安装飞书插件|核心踩坑:spawn EINVAL 错误终极解决指南
人工智能
iqiu31 分钟前
自研第一个SKILL-openclaw入门
人工智能
码农三叔33 分钟前
(11-4-02)完整人形机器人的设计与实现案例:机器人跳跃
人工智能·算法·机器人·人机交互·人形机器人