3. langgraph中的react agent使用 (在react agent添加系统提示)

环境准备

确保你已经安装了以下库:

  • langchain
  • langchain_openai
  • langgraph

你可以使用以下命令进行安装:

bash 复制代码
pip install langchain langchain_openai langgraph

代码实现

1. 初始化模型

首先,我们需要初始化智谱AI的聊天模型。

python 复制代码
from langchain_openai import ChatOpenAI

model = ChatOpenAI(
    temperature=0,
    model="glm-4-plus",
    openai_api_key="your_api_key",
    openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)

2. 定义自定义工具

我们将使用一个自定义工具来返回纽约和旧金山的天气信息。

python 复制代码
from typing import Literal
from langchain_core.tools import tool

@tool
def get_weather(city: Literal["nyc", "sf"]):
    """使用此工具获取天气信息."""
    if city == "nyc":
        return "It might be cloudy in nyc"
    elif city == "sf":
        return "It's always sunny in sf"
    else:
        raise AssertionError("Unknown city")

tools = [get_weather]

3. 添加系统提示

我们可以添加一个系统提示来指定响应的语言。

python 复制代码
prompt = "Respond in Italian"

4. 定义执行图

使用langgraph库创建一个React代理。

python 复制代码
from langgraph.prebuilt import create_react_agent

graph = create_react_agent(model, tools=tools, state_modifier=prompt)

5. 定义输出流处理函数

定义一个函数来处理输出流。

python 复制代码
def print_stream(stream):
    for s in stream:
        message = s["messages"][-1]
        if isinstance(message, tuple):
            print(message)
        else:
            message.pretty_print()

6. 运行并打印结果

输入一个用户消息并运行模型,打印输出结果。

python 复制代码
inputs = {"messages": [("user", "What's the weather in NYC?")]}

print_stream(graph.stream(inputs, stream_mode="values"))

输出结果如下:

================================[1m Human Message [0m=================================
What's the weather in NYC?
================================[1m Ai Message [0m==================================
Tool Calls:
  get_weather (call_9208187369440656653)
 Call ID: call_9208187369440656653
  Args:
    city: nyc
================================[1m Tool Message [0m=================================
Name: get_weather

It might be cloudy in nyc
================================[1m Ai Message [0m==================================

Il tempo a New York potrebbe essere nuvoloso.

参考链接:https://langchain-ai.github.io/langgraph/how-tos/create-react-agent-system-prompt/

相关推荐
迅易科技23 分钟前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神1 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI2 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长3 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME3 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself4 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董5 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee5 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa5 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai