3. langgraph中的react agent使用 (在react agent添加系统提示)

环境准备

确保你已经安装了以下库:

  • langchain
  • langchain_openai
  • langgraph

你可以使用以下命令进行安装:

bash 复制代码
pip install langchain langchain_openai langgraph

代码实现

1. 初始化模型

首先,我们需要初始化智谱AI的聊天模型。

python 复制代码
from langchain_openai import ChatOpenAI

model = ChatOpenAI(
    temperature=0,
    model="glm-4-plus",
    openai_api_key="your_api_key",
    openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)

2. 定义自定义工具

我们将使用一个自定义工具来返回纽约和旧金山的天气信息。

python 复制代码
from typing import Literal
from langchain_core.tools import tool

@tool
def get_weather(city: Literal["nyc", "sf"]):
    """使用此工具获取天气信息."""
    if city == "nyc":
        return "It might be cloudy in nyc"
    elif city == "sf":
        return "It's always sunny in sf"
    else:
        raise AssertionError("Unknown city")

tools = [get_weather]

3. 添加系统提示

我们可以添加一个系统提示来指定响应的语言。

python 复制代码
prompt = "Respond in Italian"

4. 定义执行图

使用langgraph库创建一个React代理。

python 复制代码
from langgraph.prebuilt import create_react_agent

graph = create_react_agent(model, tools=tools, state_modifier=prompt)

5. 定义输出流处理函数

定义一个函数来处理输出流。

python 复制代码
def print_stream(stream):
    for s in stream:
        message = s["messages"][-1]
        if isinstance(message, tuple):
            print(message)
        else:
            message.pretty_print()

6. 运行并打印结果

输入一个用户消息并运行模型,打印输出结果。

python 复制代码
inputs = {"messages": [("user", "What's the weather in NYC?")]}

print_stream(graph.stream(inputs, stream_mode="values"))

输出结果如下:

================================[1m Human Message [0m=================================
What's the weather in NYC?
================================[1m Ai Message [0m==================================
Tool Calls:
  get_weather (call_9208187369440656653)
 Call ID: call_9208187369440656653
  Args:
    city: nyc
================================[1m Tool Message [0m=================================
Name: get_weather

It might be cloudy in nyc
================================[1m Ai Message [0m==================================

Il tempo a New York potrebbe essere nuvoloso.

参考链接:https://langchain-ai.github.io/langgraph/how-tos/create-react-agent-system-prompt/

相关推荐
程序员古德10 分钟前
《论软件的可靠性评价》审题技巧 - 系统架构设计师
人工智能·软件可靠性评价·考点概述·审题过程·可靠性模型·应用分析
半导体老登25 分钟前
新能源汽车核心元件揭秘:二极管、三极管结构与工作原理解析(2/2)
人工智能·单片机·嵌入式硬件·汽车
Orange--Lin41 分钟前
【用deepseek和chatgpt做算法竞赛】——还得DeepSeek来 -Minimum Cost Trees_5
人工智能·算法·chatgpt
范桂飓1 小时前
大规模 RDMA AI 组网技术创新:算法和可编程硬件的深度融合
人工智能
deflag1 小时前
第P10周-Pytorch实现车牌号识别
人工智能·pytorch·yolo
pzx_0011 小时前
【机器学习】K折交叉验证(K-Fold Cross-Validation)
人工智能·深度学习·算法·机器学习
海域云赵从友1 小时前
助力DeepSeek私有化部署服务:让企业AI落地更简单、更安全
人工智能·安全
伊一大数据&人工智能学习日志1 小时前
自然语言处理NLP 04案例——苏宁易购优质评论与差评分析
人工智能·python·机器学习·自然语言处理·数据挖掘
刀客1232 小时前
python3+TensorFlow 2.x(六)自编码器
人工智能·python·tensorflow
大模型之路2 小时前
Grok-3:人工智能领域的新突破
人工智能·llm·grok-3