3. langgraph中的react agent使用 (在react agent添加系统提示)

环境准备

确保你已经安装了以下库:

  • langchain
  • langchain_openai
  • langgraph

你可以使用以下命令进行安装:

bash 复制代码
pip install langchain langchain_openai langgraph

代码实现

1. 初始化模型

首先,我们需要初始化智谱AI的聊天模型。

python 复制代码
from langchain_openai import ChatOpenAI

model = ChatOpenAI(
    temperature=0,
    model="glm-4-plus",
    openai_api_key="your_api_key",
    openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)

2. 定义自定义工具

我们将使用一个自定义工具来返回纽约和旧金山的天气信息。

python 复制代码
from typing import Literal
from langchain_core.tools import tool

@tool
def get_weather(city: Literal["nyc", "sf"]):
    """使用此工具获取天气信息."""
    if city == "nyc":
        return "It might be cloudy in nyc"
    elif city == "sf":
        return "It's always sunny in sf"
    else:
        raise AssertionError("Unknown city")

tools = [get_weather]

3. 添加系统提示

我们可以添加一个系统提示来指定响应的语言。

python 复制代码
prompt = "Respond in Italian"

4. 定义执行图

使用langgraph库创建一个React代理。

python 复制代码
from langgraph.prebuilt import create_react_agent

graph = create_react_agent(model, tools=tools, state_modifier=prompt)

5. 定义输出流处理函数

定义一个函数来处理输出流。

python 复制代码
def print_stream(stream):
    for s in stream:
        message = s["messages"][-1]
        if isinstance(message, tuple):
            print(message)
        else:
            message.pretty_print()

6. 运行并打印结果

输入一个用户消息并运行模型,打印输出结果。

python 复制代码
inputs = {"messages": [("user", "What's the weather in NYC?")]}

print_stream(graph.stream(inputs, stream_mode="values"))

输出结果如下:

复制代码
================================[1m Human Message [0m=================================
What's the weather in NYC?
================================[1m Ai Message [0m==================================
Tool Calls:
  get_weather (call_9208187369440656653)
 Call ID: call_9208187369440656653
  Args:
    city: nyc
================================[1m Tool Message [0m=================================
Name: get_weather

It might be cloudy in nyc
================================[1m Ai Message [0m==================================

Il tempo a New York potrebbe essere nuvoloso.

参考链接:https://langchain-ai.github.io/langgraph/how-tos/create-react-agent-system-prompt/

相关推荐
强盛小灵通专卖员7 小时前
闪电科创,深度学习辅导
人工智能·sci·小论文·大论文·延毕
通街市密人有7 小时前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
大千AI助手7 小时前
TruthfulQA:衡量语言模型真实性的基准
人工智能·语言模型·自然语言处理·llm·模型评估·truthfulqa·事实性基准
蚂蚁RichLab前端团队7 小时前
🚀🚀🚀 RichLab - 花呗前端团队招贤纳士 - 【转岗/内推/社招】
前端·javascript·人工智能
智数研析社7 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
救救孩子把8 小时前
2-机器学习与大模型开发数学教程-第0章 预备知识-0-2 数列与级数(收敛性、幂级数)
人工智能·数学·机器学习
yzx9910138 小时前
接口协议全解析:从HTTP到gRPC,如何选择适合你的通信方案?
网络·人工智能·网络协议·flask·pygame
只说证事9 小时前
2025年数字公共治理专业重点学什么内容?(详细指南)
人工智能
LeeZhao@9 小时前
【AI推理部署】Docker篇04—Docker自动构建镜像
人工智能·docker·容器
程思扬9 小时前
利用JSONCrack与cpolar提升数据可视化及跨团队协作效率
网络·人工智能·经验分享·docker·信息可视化·容器·架构