5. langgraph中的react agent使用 (从零构建一个react agent)

1. 定义 Agent 状态

首先,我们需要定义 Agent 的状态,这包括 Agent 所持有的消息。

python 复制代码
from typing import (
    Annotated,
    Sequence,
    TypedDict,
)
from langchain_core.messages import BaseMessage
from langgraph.graph.message import add_messages

class AgentState(TypedDict):
    
    messages: Annotated[Sequence[BaseMessage], add_messages]

2. 初始化模型和工具

接下来,我们初始化一个 ChatOpenAI 模型,并定义一个工具 get_weather

python 复制代码
from langchain_openai import ChatOpenAI
from langchain_core.tools import tool

model = ChatOpenAI(
    temperature=0,
    model="glm-4-plus",
    openai_api_key="your_api_key",
    openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)

@tool
def get_weather(location: str):
    """Call to get the weather from a specific location."""
    # This is a placeholder for the actual implementation
    # Don't let the LLM know this though 😊
    if any([city in location.lower() for city in ["sf", "san francisco"]]):
        return "It's sunny in San Francisco, but you better look out if you're a Gemini 😈."
    else:
        return f"I am not sure what the weather is in {location}"

tools = [get_weather]

model = model.bind_tools(tools)

3. 定义工具节点和模型调用节点

我们需要定义工具节点和模型调用节点,以便在 Agent 工作流中使用。

python 复制代码
import json
from langchain_core.messages import ToolMessage, SystemMessage
from langchain_core.runnables import RunnableConfig

tools_by_name = {tool.name: tool for tool in tools}

def tool_node(state: AgentState):
    outputs = []
    for tool_call in state["messages"][-1].tool_calls:
        tool_result = tools_by_name[tool_call["name"]].invoke(tool_call["args"])
        outputs.append(
            ToolMessage(
                content=json.dumps(tool_result),
                name=tool_call["name"],
                tool_call_id=tool_call["id"],
            )
        )
    return {"messages": outputs}

def call_model(
    state: AgentState,
    config: RunnableConfig,
):
 
    system_prompt = SystemMessage(
        "You are a helpful AI assistant, please respond to the users query to the best of your ability!"
    )
    response = model.invoke([system_prompt] + state["messages"], config)

    return {"messages": [response]}

def should_continue(state: AgentState):
    messages = state["messages"]
    last_message = messages[-1]
    # If there is no function call, then we finish
    if not last_message.tool_calls:
        return "end"
    # Otherwise if there is, we continue
    else:
        return "continue"

4. 构建工作流

使用 StateGraph 构建工作流,定义节点和边。

python 复制代码
from langgraph.graph import StateGraph, END

workflow = StateGraph(AgentState)

workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)

workflow.set_entry_point("agent")

workflow.add_conditional_edges(
    "agent",
    should_continue,
    {
        "continue": "tools",
        "end": END,
    },
)

workflow.add_edge("tools", "agent")

graph = workflow.compile()

from IPython.display import Image, display

try:
    display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
    pass

5. 运行工作流

最后,我们定义一个辅助函数来格式化输出,并运行工作流。

python 复制代码
# Helper function for formatting the stream nicely
def print_stream(stream):
    for s in stream:
        message = s["messages"][-1]
        if isinstance(message, tuple):
            print(message)
        else:
            message.pretty_print()

inputs = {"messages": [("user", "what is the weather in sf")]}
print_stream(graph.stream(inputs, stream_mode="values"))

输出结果如下:

复制代码
================================[1m Human Message [0m=================================
what is the weather in sf
================================[1m Ai Message [0m==================================
Tool Calls:
  get_weather (call_9208187575599553774)
 Call ID: call_9208187575599553774
  Args:
    location: San Francisco
================================[1m Tool Message [0m=================================
Name: get_weather

"It's sunny in San Francisco, but you better look out if you're a Gemini 😈."
================================[1m Ai Message [0m==================================

It's sunny in San Francisco, but you better look out if you're a Gemini 😈.

参考链接:https://langchain-ai.github.io/langgraph/how-tos/react-agent-from-scratch/

相关推荐
ARM+FPGA+AI工业主板定制专家16 分钟前
基于Jetson+GMSL AI相机的工业高动态视觉感知方案
人工智能·机器学习·fpga开发·自动驾驶
新智元23 分钟前
刚刚,谷歌深夜上新 Veo 3.1!网友狂刷 2.75 亿条,Sora 2 要小心了
人工智能·openai
yuzhuanhei31 分钟前
Segment Anything(SAM)
人工智能
做科研的周师兄33 分钟前
【机器学习入门】7.4 随机森林:一文吃透随机森林——从原理到核心特点
人工智能·学习·算法·随机森林·机器学习·支持向量机·数据挖掘
lll上36 分钟前
三步对接gpt-5-pro!地表强AI模型实测
人工智能·gpt
喜欢吃豆41 分钟前
一份关于语言模型对齐的技术论述:从基于PPO的RLHF到直接偏好优化
人工智能·语言模型·自然语言处理·大模型·强化学习
超龄超能程序猿1 小时前
Spring AI Alibaba 与 Ollama对话历史的持久化
java·人工智能·spring
AI大模型1 小时前
AI智能体开发框架LangChain & LangGraph快速入门实战(包含LangSmith)
程序员·langchain·llm
孤狼灬笑1 小时前
机器学习四范式(有监督、无监督、强化学习、半监督学习)
人工智能·强化学习·无监督学习·半监督学习·有监督学习
第七序章1 小时前
【C++】AVL树的平衡机制与实现详解(附思维导图)
c语言·c++·人工智能·机器学习