OrienterNet在二维公共地图实现视觉定位的模型

论文来自MetaAI:

https://arxiv.org/pdf/2304.02009https://arxiv.org/pdf/2304.02009github代码:

https://github.com/facebookresearch/OrienterNet?tab=readme-ov-filehttps://github.com/facebookresearch/OrienterNet?tab=readme-ov-file

研究目的

论文提出的OrienterNet是一种基于二维公共地图实现视觉定位的深度学习模型,旨在替代传统依赖三维点云的视觉定位方法,以便利用简单的二维地图如OpenStreetMap进行准确定位。作者的目标是使模型在不依赖高昂构建成本的三维地图的情况下,通过匹配图像与二维地图元素实现亚米级精度的定位。

行业现状

当前主流的视觉定位方法依赖三维点云等复杂数据结构,这些数据的构建和维护成本高昂,且需要使用高密度传感器如LiDAR来生成场景地图,并需要频繁更新。现有的三维地图存储量巨大,难以部署到移动设备上,这在大规模应用中面临挑战。

传统方法大致可以分为以下几类:

基于三维点云 :通过结构化三维模型来实现高精度的定位,适用于机器人和增强现实(AR)应用。

基于卫星图像 :假设场景平面,采用卫星影像实现粗略的二维定位,但精度较低。

基于二维平面地图:二维地图(如OpenStreetMap)体积小,但因缺乏高度信息而限制了精度。

模型构建

OrienterNet的模型结构通过输入图像的重力方向以及粗略的GPS位置来生成图像的BEV,并与OpenStreetMap进行匹配。模型的输出为摄像头3-DoF位姿,包括位置x, y和朝向θ,通过概率分布进行融合,形成最终的定位结果。

模型讲解

模型包含三个主要模块:

BEV视角推理 :通过CNN从输入图像中提取特征,转换为鸟瞰图,并赋予每个网格单元的置信度,这里还用了重力来矫正BEV的图像,对BEV视角内容做了空间的分区

地图编码 :通过CNN将OpenStreetMap的数据(如建筑物、道路、行人等)编码为包含几何和语义信息的神经网络地图。

模板匹配:利用神经地图和BEV进行模板匹配,这里其实是对于BEV的变换的可能性做一个穷举分类,比如假设xy偏移量和角度偏移都有100种可能性,叠加上就是一万种模版,对于每个变换都和地图做一些傅里叶变换的计算,最终得出各个位置的相似度,生成相机位置的概率分布。

实现的效果

实验表明,OrienterNet能有效实现亚米级别的定位,显著提升了现有方法的准确性。相比传统方法,OrienterNet在二维地图的基础上进行定位,不需要昂贵的三维构建成本,并实现了在AR和机器人应用中的较强泛化能力。模型在多个数据集上的实验结果显示,与精度较低的GPS相比,OrienterNet达到了更高的定位准确性,特别是在多帧融合后其效果更为显著。

相关推荐
花妖大人6 分钟前
Python和LLM问题
python·llm
不喜欢学数学er29 分钟前
算法第五十三天:图论part04(第十一章)
开发语言·python·图论
你怎么知道我是队长39 分钟前
python---构造函数、析构函数
开发语言·python
CF14年老兵41 分钟前
深入浅出 Python 一等函数:一份友好的全面解析
后端·python·trae
CoovallyAIHub1 小时前
目标检测模型评估金标准:mAP全解读,Coovally助你高效调参!
深度学习·算法·计算机视觉
CoovallyAIHub1 小时前
基于视觉的果园无人机导航:一种基于干预模仿学习与VAE控制器的真实世界验证
深度学习·算法·计算机视觉
jumin18061 小时前
python采用jdbc连接oracle
python·oracle
君万2 小时前
【go语言】字符串函数
爬虫·python·golang
captainOO72 小时前
MRO and mixin in Python Django
后端·python·django
小磊哥er2 小时前
【办公自动化】如何使用Python库高效自动化处理图像?
python