【AI绘画】Alpha-VLLM 的 Lumina-Next:新一代图像生成器

简介

Lumina-Next-T2I 是在 Lumina-T2I 成功基础上发展起来的尖端图像生成模型。它采用了带有 2B 参数模型的 Next-DiT 和 Gemma-2B 文本编码器,推理速度更快,生成样式更丰富,并增强了多语言支持。

模型架构

Lumina-Next-T2I 的生成模型建立在 Next-DiT 骨干之上,文本编码器是 Gemma 2B 模型,而 VAE 则使用由 stabilityai 微调的 sdxl 版本。

  • 生成模型: Next-DiT
  • 文本编码器 Gemma-2B
  • VAE: sdxl-vae

新闻和更新

  • 2024 年 5 月 12 日,Lumina-Next-T2I 型号发布,为图像生成提供了更快更低的内存使用率。

安装

  1. 创建 conda 环境并安装 PyTorch 注意:您可能需要根据驱动程序版本调整 CUDA 版本
bash 复制代码
conda create -n Lumina_T2X -y
	conda activate Lumina_T2X
	conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y
  1. 安装依赖
bash 复制代码
pip install diffusers huggingface_hub
pip install flash-attn --no-build-isolation
  1. Diffusers推理
bash 复制代码
from diffusers import LuminaText2ImgPipeline
import torch

pipeline = LuminaText2ImgPipeline.from_pretrained("/path/to/ckpt/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16).to("cuda")

# or you can download the model using code directly
# pipeline = LuminaText2ImgPipeline.from_pretrained("Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16).to("cuda")

image = pipeline(prompt="Upper body of a young woman in a Victorian-era outfit with brass goggles and leather straps. "
                        "Background shows an industrial revolution cityscape with smoky skies and tall, metal structures").images[0]

鉴赏效果

A winter landscape with a frozen lake, snow-covered pine trees, and a small cabin with smoke coming out of the chimney.

An astronaut standing on a moonlit alien planet, with purple mountains and two large moons in the sky.

A rustic farmhouse kitchen with a wooden table, a bowl of fresh apples, and a cat curled up on a chair.

This is the Lumina output, and I wanted to show it because it was cartoony

感谢大家花时间阅读我的文章,你们的支持是我不断前进的动力。点赞并关注,获取最新科技动态,不落伍!🤗🤗🤗

相关推荐
不朽の燃梦7 分钟前
OpenCV基础(1)
人工智能·opencv·计算机视觉
蓝天星空15 分钟前
tensorflow有哪些具体影响,和chatgpt有什么关系
人工智能
数据媛19 分钟前
TensorFlow_T7 咖啡豆识别
人工智能·python·深度学习·机器学习·tensorflow
凡人的AI工具箱39 分钟前
15分钟学 Go 第 59 天 :更高级的Go话题——接触微服务
开发语言·人工智能·后端·微服务·golang
冬天的枫树1 小时前
计算机视觉空域处理完整版——超详细图文解
图像处理·人工智能·计算机视觉·图像滤波
青瓷程序设计1 小时前
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
人工智能·python·深度学习
DashVector1 小时前
如何使用DashVector的多向量检索
开发语言·数据库·人工智能·数据库架构
小嗷犬1 小时前
【论文笔记】LoRA: Low-Rank Adaptation of Large Language Models
论文阅读·人工智能·语言模型·自然语言处理·大模型·微调
英码科技2 小时前
昇腾系列双处理边缘计算盒子DA500I,打造高效低延迟的视觉推理解决方案
人工智能·边缘计算
SEVEN-YEARS2 小时前
深入理解BERT模型:BertModel类详解
人工智能·深度学习·自然语言处理·bert