OPENCV 检测直线[opencv--3]

opencv中集成了很多好用的函数,比如霍夫变换检测直线的函数,当然,考虑到看我文章的人水平,我这里只讲讲如何使用这个函数,和怎么调节其中的参数

先把运行效果PO出来吧

cpp 复制代码
#include "CV_ERROR.h"
#include "MCV_funs.hpp"

#include <opencv2/opencv.hpp>
#include <iostream>

int main() {
    cv::utils::logging::setLogLevel(cv::utils::logging::LOG_LEVEL_ERROR);
    // 读取PNG图像
    //cv::Mat image = cv::imread("lines.png", cv::IMREAD_COLOR);
    cv::Mat image = cv::imread("PIC.jpg", cv::IMREAD_COLOR);
    if (image.empty()) {
        std::cerr << "无法读取图像文件" << std::endl;
        return -1;
    }
    showimageWin(image);

    // 转换为灰度图像
    cv::Mat gray;
    cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);

    // 应用边缘检测(Canny)
    cv::Mat edges;
    cv::Canny(gray, edges, 150, 200, 3);

    showimageWin(edges);

    // 使用霍夫变换检测直线
    std::vector<cv::Vec2f> lines;
    cv::HoughLines(edges, lines, 0.5, CV_PI / 360, 200);


    // 在原图上绘制检测到的直线
    cv::Mat result = image.clone();
    for (size_t i = 0; i < lines.size(); i++) {
        float rho = lines[i][0], theta = lines[i][1];
        cv::Point pt1, pt2;
        double a = cos(theta), b = sin(theta);
        double x0 = a * rho, y0 = b * rho;
        pt1.x = cvRound(x0 + 1000 * (-b));
        pt1.y = cvRound(y0 + 1000 * (a));
        pt2.x = cvRound(x0 - 1000 * (-b));
        pt2.y = cvRound(y0 - 1000 * (a));
        cv::line(result, pt1, pt2, cv::Scalar(0, 255, 0), 15, cv::LINE_AA);
    }

    // 显示结果图像
    showimageWin(result);
    cv::waitKey();

    return 0;
}

下面是原理类的讲解,本鼠懒得重复做笔记了,直接PO在下面吧ψ(`∇´)ψ

相关推荐
招摇的一半月亮1 小时前
P2242 公路维修问题
数据结构·c++·算法
f***01932 小时前
CC++链接数据库(MySQL)超级详细指南
c语言·数据库·c++
合方圆~小文2 小时前
球型摄像机作为现代监控系统的核心设备
java·数据库·c++·人工智能
椰萝Yerosius3 小时前
[题解]2024CCPC郑州站——Z-order Curve
c++·算法
audyxiao0013 小时前
期刊研究热点扫描|一文了解计算机视觉顶刊TIP的研究热点
人工智能·计算机视觉·transformer·图像分割·多模态
AI科技星4 小时前
为什么变化的电磁场才产生引力场?—— 统一场论揭示的时空动力学本质
数据结构·人工智能·经验分享·算法·计算机视觉
深蓝海拓4 小时前
opencv的模板匹配(Template Matching)学习笔记
人工智能·opencv·计算机视觉
滨HI06 小时前
C++ opencv简化轮廓
开发语言·c++·opencv
学习路上_write6 小时前
FREERTOS_互斥量_创建和使用
c语言·开发语言·c++·stm32·单片机·嵌入式硬件
Coding茶水间6 小时前
基于深度学习的路面坑洞检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉