用DMA来自动控制PWM的输出(音频输出,交直流转换)

一、前提分析

举例:一首歌所包含的音阶有高有低,而按照某种编曲的顺序排列也就对应了不同的频率(五线谱:1234567 对应的音阶各不相同)所以频率可以理解为它的源头。频率的来源又可由PWM来控制故而一首歌所包含的频率序列很长,若每次都交给cpu来做不能做到节省资源,故引出如下技术方案。

二、 DMA和PWM之间如何相关联

控制PWM输出一般采用TIM的OC(定时器的输出比较),初始化完成后一般通过改变TIMx->CCRx寄存器的值来改变占空比,而DMA搬运方向中有存储器到外设这种,因此外设的地址可设为TIMx->CCRx的地址,存储器的地址根据 一、前提分析 中的思想初始化一个含有频率序列的数组,存储器的基地址即为此数组。

cpp 复制代码
U32 SRC_Buffer [256];
//这个频率序列的初始化就需要根据相应场景来进行,这里重在编程思想的记录
void DMA_Configuration( void )
{
  DMA_InitTypeDef DMA_InitStructure;
  
  RCC_AHBPeriphClockCmd( RCC_AHBPeriph_DMA1, ENABLE );  // dma1时钟使能
    
  DMA_DeInit( DMA1_Channel5 );   // DMA复位
  DMA_StructInit( &DMA_InitStructure );   // DMA缺省的参数
    
  DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) &TIM1->CCR3; //TIM1的通道3
  DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) SRC_Buffer;  //内存地址
  DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; //dma传输方向,单向
  DMA_InitStructure.DMA_BufferSize = sizeof( SRC_Buffer )/4; //此处根据实际情况调整
  DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //设置DMA的外设递增模式,一个外设
  DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;  //设置DMA的内存递增模式,
  DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; //外设数据字长
  DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;   //内存数据字长
  //循环模式开启,Buffer写满后,自动回到初始地址开始传输
  DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;  //设置DMA的传输模式
  DMA_InitStructure.DMA_Priority = DMA_Priority_High; //设置DMA的优先级别
  DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;  //设置DMA的2个memory中的变量互相访问
  DMA_Init( DMA1_Channel5, &DMA_InitStructure );
  
  DMA_ClearFlag( DMA1_IT_TC5 );
  DMA_ITConfig( DMA1_Channel5, DMA_IT_TC, ENABLE );
  
  DMA_Cmd( DMA1_Channel5, ENABLE );
}

三、如何控制每次DMA传输之间的间隔以拟合音轨或正弦波

这里可以将DMA与定时器绑定从而控制PWM流,触发条件为定时器计数溢出,由于定时器计数溢出事件与DMA功能绑定,故间隔取决于定时器的频率和预装载值。

cpp 复制代码
void Tim1_Configuration( void )
{
  INT16U TIM_Prescaler, TIM_Period;
  INT32U utemp;
  TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
  TIM_OCInitTypeDef TIM_OCInitStructure;
  
  RCC_APB2PeriphClockCmd( RCC_APB2Periph_TIM1, ENABLE );
  
  TIM_DeInit( TIM1 );

  
  TIM_Prescaler = xxx;//不同芯片及不同场景此处取值不同,故此处由测试得出
 
  
  
  TIM_Period = xxx;               // 不同芯片及不同场景此处取值不同,故此处由测试得出
    
  TIM_TimeBaseStructure.TIM_Period = TIM_Period - 1;
  TIM_TimeBaseStructure.TIM_Prescaler = TIM_Prescaler - 1;
  TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
  TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;               
  TIM_TimeBaseInit( TIM1, &TIM_TimeBaseStructure );
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; // 使能输出比较状态
  TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable; // 失能输出比较N状态
  TIM_OCInitStructure.TIM_Pulse = 72;
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
  TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;          
  TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;
  TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
  TIM_OC3Init( TIM1, &TIM_OCInitStructure );
  TIM_OC3PreloadConfig( TIM1, TIM_OCPreload_Enable );   // 使能TIMx在CCR3上的预装载寄存器
    
 
  TIM_DMACmd( TIM1, TIM_DMA_Update, ENABLE );        //这里是最重要的一步


  TIM_Cmd( TIM1, ENABLE );      // 定时器开始运行
    
  // 这条语句必须要有!!!
  TIM_CtrlPWMOutputs( TIM1, ENABLE ); 
}

最后说明,上述代码中虽开启了很多中断,但实际未参与功能的实现,留作预留接口便于更深层次的逻辑扩展。

相关推荐
Icomi_1 小时前
【神经网络】0.深度学习基础:解锁深度学习,重塑未来的智能新引擎
c语言·c++·人工智能·python·深度学习·神经网络
云山工作室2 小时前
基于单片机的智慧农业大棚系统(论文+源码)
单片机·嵌入式硬件
柒十三.2 小时前
江科大51单片机笔记【10】蜂鸣器(上)
笔记·嵌入式硬件·51单片机
菜鸟00882 小时前
蓝桥杯第二天:2023省赛C 1题 分糖果
c语言·职场和发展·蓝桥杯
诸葛小猿3 小时前
windows部署spleeter 版本2.4.0:分离音频的人声和背景音乐
windows·音视频·音频·语音识别·spleeter
zephyr_zeng3 小时前
VsCode + EIDE + OpenOCD + STM32(野火DAP) 开发环境配置
c语言·c++·vscode·stm32·单片机·嵌入式硬件·编辑器
鹿屿二向箔3 小时前
72MHz的MCU能支持多大频率的传感器数据采样率?
服务器·网络·单片机
帅弟1503 小时前
Day4 C语言与画面显示练习
c语言·开发语言
美好的事情总会发生4 小时前
SDIO(Secure Digital Input Output)详解
linux·嵌入式硬件·硬件工程
柒月玖.4 小时前
基于AT89C51单片机的家用全自动洗衣机设计
单片机·嵌入式硬件