sglang 部署Qwen2VL7B,大模型部署,速度测试,深度学习

sglang

项目github仓库:

https://github.com/sgl-project/sglang

项目说明书:

https://sgl-project.github.io/start/install.html

资讯:

https://github.com/sgl-project/sgl-learning-materials?tab=readme-ov-file#the-first-sglang-online-meetup

快得离谱:

外链图片转存中...(img-E3n1Ivz9-1731913508383)

图来源:https://lmsys.org/blog/2024-09-04-sglang-v0-3/

Docker使用:

bash 复制代码
docker run --gpus device=0 \
    --shm-size 32g \
    -p 30000:30000 \
    -v /root/xiedong/Qwen2-VL-7B-Instruct:/Qwen2-VL \
    --env "HF_TOKEN=abc-1234" \
    --ipc=host \
    -v /root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4:/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4 \
    lmsysorg/sglang:latest \
    python3 -m sglang.launch_server --model-path /Qwen2-VL --host 0.0.0.0 --port 30000 --chat-template qwen2-vl --context-length 8192 --log-level-http warning

启动成功:

接口文档:

http://101.136.22.140:30000/docs

速度测试代码

bash 复制代码
import time
from openai import OpenAI

# 初始化OpenAI客户端
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:30000/v1')

# 定义图像路径
image_paths = [
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo256.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo512.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo768.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1024.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1280.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo2560.jpeg"
]

# 设置请求次数
num_requests = 10

# 存储每个图像的平均响应时间
average_speeds = {}

# 遍历每张图片
for image_path in image_paths:
    total_time = 0

    # 对每张图片执行 num_requests 次请求
    for _ in range(num_requests):
        start_time = time.time()

        # 发送请求并获取响应
        response = client.chat.completions.create(
            model="/Qwen2-VL",
            messages=[{
                'role': 'user',
                'content': [{
                    'type': 'text',
                    'text': 'Describe the image please',
                }, {
                    'type': 'image_url',
                    'image_url': {
                        'url': image_path,
                    },
                }],
            }],
            temperature=0.8,
            top_p=0.8
        )

        # 记录响应时间
        elapsed_time = time.time() - start_time
        total_time += elapsed_time

        # 打印当前请求的响应内容(可选)
        print(f"Response for {image_path}: {response.choices[0].message.content}")

    # 计算并记录该图像的平均响应时间
    average_speed = total_time / num_requests
    average_speeds[image_path] = average_speed

    print(f"Average speed for {image_path}: {average_speed} seconds")

# 输出所有图像的平均响应时间
for image_path, avg_speed in average_speeds.items():
    print(f"{image_path}: {avg_speed:.2f} seconds")

速度测试结果

sglang 测试结果:

Model 显存占用 (MiB) 分辨率 处理时间 (秒)
Qwen2-VL-7B-Instruct 70G 256 x 256 1.71
512 x 512 1.52
768 x 768 1.85
1024 x 1024 2.05
1280 x 1280 1.88
2560 x 2560 3.26

纯transformer,不用加速框架,我之前的测了一张图的速度是:5.22 seconds,很慢。

附录-vllm速度测试

启动:

bash 复制代码
docker run --gpus device=0 \
    -v /root/xiedong/Qwen2-VL-7B-Instruct:/Qwen2-VL \
    -v /root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4:/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4 \
    -p 30000:8000 \
    --ipc=host \
    vllm/vllm-openai:latest \
    --model /Qwen2-VL --gpu_memory_utilization=0.9 

代码:

bash 复制代码
import time
import base64
from openai import OpenAI

# 初始化OpenAI客户端
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:30000/v1')

# 定义图像路径
image_paths = [
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo256.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo512.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo768.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1024.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1280.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo2560.jpeg"
]

# 设置请求次数
num_requests = 10

# 存储每个图像的平均响应时间
average_speeds = {}

# 将图片转换为 Base64 编码的函数
def image_to_base64(image_path):
    with open(image_path, "rb") as img_file:
        return base64.b64encode(img_file.read()).decode('utf-8')

# 遍历每张图片
for image_path in image_paths:
    total_time = 0

    # 将图片转换为 Base64 编码
    image_base64 = image_to_base64(image_path)

    # 对每张图片执行 num_requests 次请求
    for _ in range(num_requests):
        start_time = time.time()

        # 发送请求并获取响应
        response = client.chat.completions.create(
            model="/Qwen2-VL",
            messages=[{
                'role': 'user',
                'content': [{
                    'type': 'text',
                    'text': 'Describe the image please',
                }, {
                    'type': 'image_url',
                    'image_url': {
                        'url': f"data:image/jpeg;base64,{image_base64}",  # 使用Base64编码的图片
                    },
                }],
            }],
            temperature=0.8,
            top_p=0.8
        )

        # 记录响应时间
        elapsed_time = time.time() - start_time
        total_time += elapsed_time

        # 打印当前请求的响应内容(可选)
        print(f"Response for {image_path}: {response.choices[0].message.content}")

    # 计算并记录该图像的平均响应时间
    average_speed = total_time / num_requests
    average_speeds[image_path] = average_speed

    print(f"Average speed for {image_path}: {average_speed} seconds")

# 输出所有图像的平均响应时间
for image_path, avg_speed in average_speeds.items():
    print(f"{image_path}: {avg_speed:.2f} seconds")

速度:

Model 显存占用 (MiB) 分辨率 处理时间 (秒)
Qwen2-VL-72B-Instruct-GPTQ-Int4 70G 256 x 256 1.50
512 x 512 1.59
768 x 768 1.61
1024 x 1024 1.67
1280 x 1280 1.81
2560 x 2560 1.97

https://www.dong-blog.fun/post/1856

相关推荐
聚客AI6 小时前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar6 小时前
一文讲清 nn.Sequential 等容器类
人工智能
阿里云云原生6 小时前
如何快速看懂「祖传项目」?Qoder 强势推出新利器
人工智能
美团技术团队7 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
程序员小袁8 小时前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能
飞哥数智坊9 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元9 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒10 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生10 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报11 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc