概率论和数理统计知识点汇总——第二章随机变量的分布与数字特征

2.1 随机变量及其分布

1.随机变量的概念

定义2.1 定义在概率空间(Ω,P)上,取值为实数的函数x=x(ω)(w∈Ω)称为(Ω,P)上的一个随机变量.)

基本事件:X=a 复合事件:X

2.离散型随机变量的概率分布

定义:X的全部可能取值只有有限个或可数无穷多个

性质:

3.分布函数

定义 设X是一随机变量,则称函数F(x)=P{X≤x},x∈(-∞,+∞)为随机变量X的分布函数,记作x~F(x).

性质

4.离散型随机变量的分布函数

5.连续型随机变量及其概率密度

定义:

性质:

计算:

2.2 随机变量的数字特征

数学期望是一种数字特征,反应随机变量取值的平均水平

1.离散型随机变量的数学期望

2.连续型随机变量的数学期望

3.随机变量函数的数学期望

4.数学期望的性质

5.随机变量的方差

D(X)=E(X-EX)^2=EX^2-(EX)^2

性质:Da=0;D(X=a)=Dx;D(aX)=a^2*D(X)

6.随机变量的矩阵与切比雪夫不等式

2.3常用的离散型分布

1.退化分布

P{X=a}=1

DX=0

EX=a

2.两点分布

P{X=x}=p

P{X=y}=1-p

EX=px+(1-p)y

DX=p(1-p)(x-y)^2

3.n个点上的均匀分布

p{X=xi}=1/n

4.二项分布

EX=np

DX=np(p-1)

5.几何分布

6.超几何分布

7.泊松分布

相关推荐
Z_Jiang3 小时前
金融投资 的 小游戏:海边躺平
经验分享·金融·概率论·程序员创富
liliangcsdn2 天前
全方差公式在DDIM中的应用示例
概率论
helloworld也报错?2 天前
深度强化学习(1)——基础知识(名词解释,概率论基础,蒙特卡洛采样,马尔可夫决策过程)
人工智能·深度学习·机器学习·概率论
liliangcsdn3 天前
全期望公式在DDIM中的应用实例
算法·机器学习·概率论
surtr14 天前
【算法自用】一些比较有趣的题目
算法·动态规划·概率论·图论
natide7 天前
表示/嵌入差异-4-闵可夫斯基距离(Minkowski Distance-曼哈顿距离-欧氏距离-切比雪夫距离
人工智能·深度学习·算法·机器学习·自然语言处理·概率论
忧郁奔向冷的天10 天前
泊松分布与指数分布以及一道贝叶斯推断例题
概率论
EniacCheng11 天前
贝叶斯定理
人工智能·机器学习·概率论
EniacCheng11 天前
二项分布和泊松分布
概率论·泊松分布·二项分布
byzh_rc12 天前
[模式识别-从入门到入土] 组合分类器
人工智能·算法·机器学习·支持向量机·概率论