对数几率回归

对数几率回归简介

对数几率回归(Logistic Regression)是一种用于解决分类问题的经典统计模型,其核心思想是利用逻辑函数(Sigmoid函数)将线性回归模型的输出值映射到概率范围 [0, 1],从而实现分类预测。对数几率回归特别适合用于二分类问题。

模型表达式

对数几率回归的概率预测公式为:

其中:

  • w为权重向量,x 为输入特征向量,b为偏置项
  • 是 Sigmoid 函数

目标是通过训练确定参数 w 和 b,以最大化模型对数据的预测能力。


极大似然函数与交叉熵损失

极大似然函数

在训练过程中,假设数据集包含 n 个样本​,目标是最大化样本标签 y 的条件概率的乘积,即似然函数:

为简化计算,通常对似然函数取对数,得到对数似然函数:

交叉熵损失

对数似然函数的负值称为交叉熵损失,是对数几率回归优化的目标函数:

通过最小化交叉熵损失函数,可以训练出最优的模型参数。

在信息论中涉及信息熵与交叉熵的概念。信息熵越大,表示随机变量的不确定性越大。相对熵=信息熵+交叉熵,相对熵用来度量两个随机变量之间的差异。


参数优化方法

梯度下降法

使用梯度下降法(Gradient Descent)通过迭代更新参数 w 和 b 来最小化损失函数。更新公式为:

其中 η为学习率。

牛顿法

牛顿法是一种二阶优化方法,利用梯度和二阶导数(Hessian 矩阵)更新参数,相较于梯度下降法收敛更快。更新公式为:

其中:

  • ∇ℓ 是损失函数的梯度
  • H 是 Hessian 矩阵,定义为损失函数的二阶导数矩阵

优点: 牛顿法可以显著加快优化速度,特别是在凸优化问题中表现出色。
缺点: 计算 Hessian 矩阵和求逆的开销较大,不适合大规模数据。

相关推荐
sali-tec5 分钟前
C# 基于OpenCv的视觉工作流-章25-ORB特征点
图像处理·人工智能·opencv·算法·计算机视觉
半兽先生24 分钟前
告别 AI 乱写 Vue!用 vue-skills 构建前端智能编码标准
前端·vue.js·人工智能
摇滚侠30 分钟前
JWT 是 token 的一种格式,我的理解对吗?
java·人工智能·intellij-idea·spring ai·springaialibaba
xixixi777772 小时前
零样本学习 (Zero-Shot Learning, ZSL)补充
人工智能·学习·安全·ai·零样本·模型训练·训练
AI前沿晓猛哥2 小时前
战略落地咨询一般流程与步骤耗时详解:从启动到见效的全景图
数据挖掘
olivesun882 小时前
AI的第一篇编码实践-如何用RAG和LLM
人工智能
龙山云仓2 小时前
No153:AI中国故事-对话毕昇——活字印刷与AI知识生成:模块化思想与信息革
大数据·人工智能·机器学习
狒狒热知识2 小时前
2026年软文营销发稿平台优选指南:聚焦178软文网解锁高效传播新路径
大数据·人工智能
十铭忘2 小时前
个人思考3——世界动作模型
人工智能·深度学习·计算机视觉
rgb2gray2 小时前
优多元分层地理探测器模型(OMGD)研究
人工智能·算法·机器学习·回归·gwr