对数几率回归

对数几率回归简介

对数几率回归(Logistic Regression)是一种用于解决分类问题的经典统计模型,其核心思想是利用逻辑函数(Sigmoid函数)将线性回归模型的输出值映射到概率范围 [0, 1],从而实现分类预测。对数几率回归特别适合用于二分类问题。

模型表达式

对数几率回归的概率预测公式为:

其中:

  • w为权重向量,x 为输入特征向量,b为偏置项
  • 是 Sigmoid 函数

目标是通过训练确定参数 w 和 b,以最大化模型对数据的预测能力。


极大似然函数与交叉熵损失

极大似然函数

在训练过程中,假设数据集包含 n 个样本​,目标是最大化样本标签 y 的条件概率的乘积,即似然函数:

为简化计算,通常对似然函数取对数,得到对数似然函数:

交叉熵损失

对数似然函数的负值称为交叉熵损失,是对数几率回归优化的目标函数:

通过最小化交叉熵损失函数,可以训练出最优的模型参数。

在信息论中涉及信息熵与交叉熵的概念。信息熵越大,表示随机变量的不确定性越大。相对熵=信息熵+交叉熵,相对熵用来度量两个随机变量之间的差异。


参数优化方法

梯度下降法

使用梯度下降法(Gradient Descent)通过迭代更新参数 w 和 b 来最小化损失函数。更新公式为:

其中 η为学习率。

牛顿法

牛顿法是一种二阶优化方法,利用梯度和二阶导数(Hessian 矩阵)更新参数,相较于梯度下降法收敛更快。更新公式为:

其中:

  • ∇ℓ 是损失函数的梯度
  • H 是 Hessian 矩阵,定义为损失函数的二阶导数矩阵

优点: 牛顿法可以显著加快优化速度,特别是在凸优化问题中表现出色。
缺点: 计算 Hessian 矩阵和求逆的开销较大,不适合大规模数据。

相关推荐
咩咩不吃草5 小时前
机器学习不平衡数据处理三招:k折交叉验证、下采样与过采样实战
人工智能·算法·机器学习·下采样·过采样·k折交叉验证
TSINGSEE5 小时前
国标GB28181视频质量诊断:EasyGBS服务插件EasyVQD快速识别花屏、蓝屏、画面冻结抖动
人工智能·音视频·实时音视频·视频编解码·视频质量诊断·花屏检测·画面抖动
多恩Stone5 小时前
【3DV 进阶-11】Trellis.2 数据处理与训练流程图
人工智能·pytorch·python·算法·3d·aigc·流程图
新加坡内哥谈技术5 小时前
把数据中心送上太空毫无意义
人工智能
极速learner5 小时前
Dan Koe大神的AI使用思路分析:视频解读
人工智能
乾元5 小时前
下一代检测:基于自编码器(Autoencoder)的异常流量检测
运维·网络·人工智能·深度学习·安全·安全架构
民乐团扒谱机5 小时前
【微实验】Zhang-Suen 快速并行细化算法与MATLAB实现
人工智能·学习·算法·计算机视觉·数学建模·matlab
愚公搬代码5 小时前
【愚公系列】《AI短视频创作一本通》012-AI 短视频分镜头设计(AI绘画提示词入门)
人工智能·ai作画·音视频
合合技术团队6 小时前
论文解读 | 从识别字符到理解结构,“树模型”让AI“看懂”复杂手写数学公式
人工智能·文字识别·公式识别·文档解析·textln·蜜蜂试卷
molaifeng6 小时前
统一调度:用 EasyCLI + CLIProxyAPI 打造你的私人“AI 路由器”
人工智能·codex·opencode·easycli·cliproxyapi