对数几率回归

对数几率回归简介

对数几率回归(Logistic Regression)是一种用于解决分类问题的经典统计模型,其核心思想是利用逻辑函数(Sigmoid函数)将线性回归模型的输出值映射到概率范围 [0, 1],从而实现分类预测。对数几率回归特别适合用于二分类问题。

模型表达式

对数几率回归的概率预测公式为:

其中:

  • w为权重向量,x 为输入特征向量,b为偏置项
  • 是 Sigmoid 函数

目标是通过训练确定参数 w 和 b,以最大化模型对数据的预测能力。


极大似然函数与交叉熵损失

极大似然函数

在训练过程中,假设数据集包含 n 个样本​,目标是最大化样本标签 y 的条件概率的乘积,即似然函数:

为简化计算,通常对似然函数取对数,得到对数似然函数:

交叉熵损失

对数似然函数的负值称为交叉熵损失,是对数几率回归优化的目标函数:

通过最小化交叉熵损失函数,可以训练出最优的模型参数。

在信息论中涉及信息熵与交叉熵的概念。信息熵越大,表示随机变量的不确定性越大。相对熵=信息熵+交叉熵,相对熵用来度量两个随机变量之间的差异。


参数优化方法

梯度下降法

使用梯度下降法(Gradient Descent)通过迭代更新参数 w 和 b 来最小化损失函数。更新公式为:

其中 η为学习率。

牛顿法

牛顿法是一种二阶优化方法,利用梯度和二阶导数(Hessian 矩阵)更新参数,相较于梯度下降法收敛更快。更新公式为:

其中:

  • ∇ℓ 是损失函数的梯度
  • H 是 Hessian 矩阵,定义为损失函数的二阶导数矩阵

优点: 牛顿法可以显著加快优化速度,特别是在凸优化问题中表现出色。
缺点: 计算 Hessian 矩阵和求逆的开销较大,不适合大规模数据。

相关推荐
IE0610 分钟前
深度学习系列84:使用kokoros生成tts语音
人工智能·深度学习
欧阳天羲12 分钟前
#前端开发未来3年(2026-2028)核心趋势与AI应用实践
人工智能·前端框架
IE0615 分钟前
深度学习系列83:使用outetts
人工智能·深度学习
水中加点糖21 分钟前
源码运行RagFlow并实现AI搜索(文搜文档、文搜图、视频理解)与自定义智能体(一)
人工智能·二次开发·ai搜索·文档解析·ai知识库·ragflow·mineru
imbackneverdie26 分钟前
如何用AI工具,把文献综述从“耗时费力”变成“高效产出”?
人工智能·经验分享·考研·自然语言处理·aigc·ai写作
黎燃29 分钟前
最强「学业成绩分析压力感知型 AI 心理陪伴」智能体—基于腾讯元器×TextIn大模型加速器×混元大模型的实战构建
人工智能
AKAMAI42 分钟前
预先构建的CNCF流水线:从Git到在Kubernetes上运行
人工智能·云计算
风途知识百科43 分钟前
数字高精度光伏电站灰尘监测系统
人工智能
学废了wuwu1 小时前
机器学习模型评估指标完全解析:准确率、召回率、F1分数等
人工智能·机器学习
西西o1 小时前
MindSpeed MM多模态模型微调实战指南
人工智能