对数几率回归

对数几率回归简介

对数几率回归(Logistic Regression)是一种用于解决分类问题的经典统计模型,其核心思想是利用逻辑函数(Sigmoid函数)将线性回归模型的输出值映射到概率范围 [0, 1],从而实现分类预测。对数几率回归特别适合用于二分类问题。

模型表达式

对数几率回归的概率预测公式为:

其中:

  • w为权重向量,x 为输入特征向量,b为偏置项
  • 是 Sigmoid 函数

目标是通过训练确定参数 w 和 b,以最大化模型对数据的预测能力。


极大似然函数与交叉熵损失

极大似然函数

在训练过程中,假设数据集包含 n 个样本​,目标是最大化样本标签 y 的条件概率的乘积,即似然函数:

为简化计算,通常对似然函数取对数,得到对数似然函数:

交叉熵损失

对数似然函数的负值称为交叉熵损失,是对数几率回归优化的目标函数:

通过最小化交叉熵损失函数,可以训练出最优的模型参数。

在信息论中涉及信息熵与交叉熵的概念。信息熵越大,表示随机变量的不确定性越大。相对熵=信息熵+交叉熵,相对熵用来度量两个随机变量之间的差异。


参数优化方法

梯度下降法

使用梯度下降法(Gradient Descent)通过迭代更新参数 w 和 b 来最小化损失函数。更新公式为:

其中 η为学习率。

牛顿法

牛顿法是一种二阶优化方法,利用梯度和二阶导数(Hessian 矩阵)更新参数,相较于梯度下降法收敛更快。更新公式为:

其中:

  • ∇ℓ 是损失函数的梯度
  • H 是 Hessian 矩阵,定义为损失函数的二阶导数矩阵

优点: 牛顿法可以显著加快优化速度,特别是在凸优化问题中表现出色。
缺点: 计算 Hessian 矩阵和求逆的开销较大,不适合大规模数据。

相关推荐
初九之潜龙勿用9 分钟前
在openEuler操作系统基础上实现机器学习开发以及openEuler优势分析
人工智能·机器学习
秋刀鱼 ..10 分钟前
【IEEE出版】第五届高性能计算、大数据与通信工程国际学术会议(ICHBC 2025)
大数据·人工智能·python·机器人·制造·新人首发
小王毕业啦19 分钟前
2007-2024年 地级市-公共数据开放DID
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·实证数据
飞Link30 分钟前
【轻量拓展区】网络 QoS 与带宽、延迟、抖动:AI 推理的性能瓶颈
开发语言·网络·人工智能
南极星10051 小时前
OPENCV(python)--初学之路(十四)哈里斯角检测
人工智能·opencv·计算机视觉
咚咚王者1 小时前
人工智能之数据分析 Pandas:第九章 性能优化
人工智能·数据分析·pandas
Acrel150003531381 小时前
重构能源管理:Acrel EMS 3.0 让降本增效成为底层逻辑
大数据·人工智能
dhdjjsjs1 小时前
Day31 PythonStudy
人工智能·机器学习
TextIn智能文档云平台1 小时前
深度学习在版面分析中的应用方法
人工智能·深度学习
金融小师妹1 小时前
黄金上探4260后基于阻力位识别模型回落,本周聚焦美联储决议的LSTM-NLP联合预测
大数据·人工智能·深度学习