sagemaker中使用pytorch框架的DLC训练和部署cifar图像分类任务

参考资料

获取训练数据

py 复制代码
# s3://zhaojiew-sagemaker/data/cifar10/cifar-10-python.tar.gz
import torch
import torchvision
import torchvision.transforms as transforms

def _get_transform():
    return transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 这里加载数据用的路径是/tmp/pytorch-example/cifar-10-data实际下载了tar.gz文件到本地/tmp目录,后续training也要放入tar.gz文件路径
def get_train_data_loader(data_dir='/tmp/pytorch/cifar-10-data'):
    transform=_get_transform()
    trainset=torchvision.datasets.CIFAR10(root=data_dir, train=True,
                                            download=True, transform=transform)
    return torch.utils.data.DataLoader(trainset, batch_size=4,
                                       shuffle=True, num_workers=2)


def get_test_data_loader(data_dir='/tmp/pytorch/cifar-10-data'):
    transform=_get_transform()
    testset=torchvision.datasets.CIFAR10(root=data_dir, train=False,
                                           download=True, transform=transform)
    return torch.utils.data.DataLoader(testset, batch_size=4,
                                       shuffle=False, num_workers=2)

trainloader=get_train_data_loader('/tmp/pytorch-example/cifar-10-data')
testloader=get_test_data_loader('/tmp/pytorch-example/cifar-10-data')

显示加载的数据

py 复制代码
import numpy as np
import torchvision, torch
import matplotlib.pyplot as plt

def imshow(img):
    img = img / 2 + 0.5  # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))

# get some random training images
dataiter = iter(trainloader)
images, labels = next(dataiter)

# show images
imshow(torchvision.utils.make_grid(images))

# print labels
classes = ("plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck")
print(" ".join("%9s" % classes[labels[j]] for j in range(4)))

训练和推理脚本

脚本同时用来进行训练和推理任务,推理部分的实现为model_fn,没有实现input_fn等函数

py 复制代码
import ast
import argparse
import logging

import os

import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision
import torchvision.models
import torchvision.transforms as transforms
import torch.nn.functional as F

logger=logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)

classes=('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')


# https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/cifar10_tutorial.py#L118
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1=nn.Conv2d(3, 6, 5)
        self.pool=nn.MaxPool2d(2, 2)
        self.conv2=nn.Conv2d(6, 16, 5)
        self.fc1=nn.Linear(16 * 5 * 5, 120)
        self.fc2=nn.Linear(120, 84)
        self.fc3=nn.Linear(84, 10)

    def forward(self, x):
        x=self.pool(F.relu(self.conv1(x)))
        x=self.pool(F.relu(self.conv2(x)))
        x=x.view(-1, 16 * 5 * 5)
        x=F.relu(self.fc1(x))
        x=F.relu(self.fc2(x))
        x=self.fc3(x)
        return x


def _train(args):
    is_distributed=len(args.hosts) > 1 and args.dist_backend is not None
    logger.debug("Distributed training - {}".format(is_distributed))

    if is_distributed:
        # Initialize the distributed environment.
        world_size=len(args.hosts)
        os.environ['WORLD_SIZE']=str(world_size)
        host_rank=args.hosts.index(args.current_host)
        dist.init_process_group(backend=args.dist_backend, rank=host_rank, world_size=world_size)
        logger.info(
            'Initialized the distributed environment: \'{}\' backend on {} nodes. '.format(
                args.dist_backend,
                dist.get_world_size()) + 'Current host rank is {}. Using cuda: {}. Number of gpus: {}'.format(
                dist.get_rank(), torch.cuda.is_available(), args.num_gpus))

    device='cuda' if torch.cuda.is_available() else 'cpu'
    logger.info("Device Type: {}".format(device))

    logger.info("Loading Cifar10 dataset")
    transform=transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
    trainset=torchvision.datasets.CIFAR10(root=args.data_dir, train=True,
                                            download=False, transform=transform)
    train_loader=torch.utils.data.DataLoader(trainset, batch_size=args.batch_size,
                                               shuffle=True, num_workers=args.workers)

    testset=torchvision.datasets.CIFAR10(root=args.data_dir, train=False,
                                           download=False, transform=transform)
    test_loader=torch.utils.data.DataLoader(testset, batch_size=args.batch_size,
                                              shuffle=False, num_workers=args.workers)

    logger.info("Model loaded")
    model=Net()

    if torch.cuda.device_count() > 1:
        logger.info("Gpu count: {}".format(torch.cuda.device_count()))
        model=nn.DataParallel(model)

    model=model.to(device)

    criterion=nn.CrossEntropyLoss().to(device)
    optimizer=torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)

    for epoch in range(0, args.epochs):
        running_loss=0.0
        for i, data in enumerate(train_loader):
            # get the inputs
            inputs, labels=data
            inputs, labels=inputs.to(device), labels.to(device)

            # zero the parameter gradients
            optimizer.zero_grad()

            # forward + backward + optimize
            outputs=model(inputs)
            loss=criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()
            if i % 2000 == 1999:  # print every 2000 mini-batches
                print('[%d, %5d] loss: %.3f' %
                      (epoch + 1, i + 1, running_loss / 2000))
                running_loss=0.0
    print('Finished Training')
    return _save_model(model, args.model_dir)


def _save_model(model, model_dir):
    logger.info("Saving the model.")
    path=os.path.join(model_dir, 'model.pth')
    # recommended way from http://pytorch.org/docs/master/notes/serialization.html
    torch.save(model.cpu().state_dict(), path)


def model_fn(model_dir):
    logger.info('model_fn triggered, starting to load model...')
    device="cuda" if torch.cuda.is_available() else "cpu"
    model=Net()
    if torch.cuda.device_count() > 1:
        logger.info("Gpu count: {}".format(torch.cuda.device_count()))
        model=nn.DataParallel(model)

    with open(os.path.join(model_dir, 'model.pth'), 'rb') as f:
        model.load_state_dict(torch.load(f))
    return model.to(device)


if __name__ == '__main__':
    parser=argparse.ArgumentParser()

    parser.add_argument('--workers', type=int, default=2, metavar='W',
                        help='number of data loading workers (default: 2)')
    parser.add_argument('--epochs', type=int, default=2, metavar='E',
                        help='number of total epochs to run (default: 2)')
    parser.add_argument('--batch-size', type=int, default=4, metavar='BS',
                        help='batch size (default: 4)')
    parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
                        help='initial learning rate (default: 0.001)')
    parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='momentum (default: 0.9)')
    parser.add_argument('--dist-backend', type=str, default='gloo', help='distributed backend (default: gloo)')

    # The parameters below retrieve their default values from SageMaker environment variables, which are
    # instantiated by the SageMaker containers framework.
    # https://github.com/aws/sagemaker-containers#how-a-script-is-executed-inside-the-container
    parser.add_argument('--hosts', type=str, default=ast.literal_eval(os.environ['SM_HOSTS']))
    parser.add_argument('--current-host', type=str, default=os.environ['SM_CURRENT_HOST'])
    parser.add_argument('--model-dir', type=str, default=os.environ['SM_MODEL_DIR'])
    parser.add_argument('--data-dir', type=str, default=os.environ['SM_CHANNEL_TRAINING'])
    parser.add_argument('--num-gpus', type=int, default=os.environ['SM_NUM_GPUS'])

    _train(parser.parse_args())

模型训练

提前获取pytorch镜像

  • 托管的DLC中内置了training toolkit和inference toolkit,因此只需要按照规范提供训练和推理脚本即可
py 复制代码
from sagemaker import get_execution_role

role=get_execution_role()

from sagemaker import image_uris
image_uri_inference = image_uris.retrieve(framework='pytorch',region='cn-north-1',version='1.8.0',py_version='py3',image_scope='inference', instance_type='ml.c5.4xlarge')
image_uri_train = image_uris.retrieve(framework='pytorch',region='cn-north-1',version='1.8.0',py_version='py3',image_scope='training', instance_type='ml.c5.4xlarge')
print(image_uri_inference)
print(image_uri_train)

创建Estimator

py 复制代码
from sagemaker.estimator import Estimator

# 超参数实际上会作为训练脚本的参数传入,可以通过argparse进行解析
hyperparameters = {
    'epochs': 1,
}

# 使用通用的Estimator,
estimator=Estimator(
    image_uri=image_uri_train, # 这里可以使用托管镜像或基于托管的扩展镜像
    role=role,
    instance_count=1,
    instance_type='ml.p3.2xlarge',
    hyperparameters=hyperparameters,
    source_dir="src",
    entry_point="cifar10.py"
    # model_uri="s3://zhaojiew-sagemaker/model/cifar10-pytorch/" # 如果有pre-trained的模型可以使用此参数导入

)
# 在本地测试训练任务,实际上是通过docker-compose运行
#estimator.fit('file:///tmp/pytorch-example/cifar-10-data')
# 提交train任务
estimator.fit('s3://zhaojiew-tmp/cifar-10-data/',)

也可以使用PyTorch的Estimator

py 复制代码
from sagemaker.pytorch.estimator import PyTorch
# 也可以使用PyTorch
pytorch_estimator = PyTorch(
    entry_point='cifar10.py',
    instance_type='ml.p3.2xlarge',
    instance_count=1,
    role=role,
    framework_version='1.8.0',
    py_version='py3',
    hyperparameters=hyperparameters
)
pytorch_estimator.fit('s3://zhaojiew-tmp/cifar-10-data/')

最终存储的模型位置为

复制代码
model_location = 's3://sagemaker-cn-north-1-xxxxxxx/pytorch-training-2024-11-19-09-56-55-508/output/model.tar.gz'

模型部署

实际上可以直接基于estimator进行部署,但是这里导入模型将两个阶段分开

python 复制代码
from sagemaker.pytorch.model import PyTorchModel

pytorch_model = PyTorchModel(
    # 指定模型所在位置
    model_data=model_location,
    role=role,
    image_uri=image_uri_inference,
    entry_point='cifar10.py', # 如果指定了推理脚本会打包为source.tar.gz并和model.tar.gz合并成一个tar文件
    source_dir="src" # 指定代码所在目录
)
pytorch_predictor = pytorch_model.deploy(instance_type='ml.m5.xlarge', initial_instance_count=1)

也可以使用更通用的Model

py 复制代码
from sagemaker.model import Model

model = Model(
    # # 指定模型所在位置
    model_data=model_location,
    image_uri=image_uri_inference,
    role=role,
    entry_point="cifar10.py",
    source_dir="src"
)

model_predictor=model.deploy(1, "ml.m5.xlarge")

模型调用

如果predictor丢失,可以通过如下方法重建

py 复制代码
from sagemaker.predictor import Predictor
from sagemaker.serializers import NumpySerializer
from sagemaker.deserializers import NumpyDeserializer

model_predictor = Predictor(
    endpoint_name="pytorch-inference-2024-11-19-14-19-49-678"
)
model_predictor.serializer = NumpySerializer()
model_predictor.deserializer = NumpyDeserializer()

使用测试集测试

py 复制代码
# get some test images
dataiter = iter(testloader)
images, labels = next(dataiter)

# print images
imshow(torchvision.utils.make_grid(images))
print("GroundTruth: ", " ".join("%4s" % classes[labels[j]] for j in range(4)))

outputs = model_predictor.predict(images.numpy())
_, predicted = torch.max(torch.from_numpy(np.array(outputs)), 1)

print("Predicted: ", " ".join("%4s" % classes[predicted[j]] for j in range(4)))

由于模型部署后仅仅是在机器学习实例上启动容器,因此也可以在本地测试,例如以下docker-compose文件

yaml 复制代码
networks:
  sagemaker-local:
    name: sagemaker-local
services:
  localendpoint:
    command: serve # 也可以忽略,默认为serve
    container_name: localendpoint
    environment:
    - AWS_REGION=cn-north-1
    - SAGEMAKER_PROGRAM=cifar10.py
    - S3_ENDPOINT_URL=https://s3.cn-north-1.amazonaws.com.cn
    - SAGEMAKER_SUBMIT_DIRECTORY=/opt/ml/model/code
    image: 727897471807.dkr.ecr.cn-north-1.amazonaws.com.cn/pytorch-inference:1.8.0-cpu-py3
    ports:
    - 8080:8080
    networks:
      sagemaker-local:
    volumes:
    - ./src/cifar10.py:/opt/ml/model/code/cifar10.py
    - ./model/model.pth:/opt/ml/model/model.pth
version: '2.3'

但是这只能测试推理服务器能够正常启动,实际调用由于无法使用boto3和sagemaker sdk,可能需要手动封装http请求

python 复制代码
import numpy as np
import torch
import requests
from io import BytesIO

buffer = BytesIO()
np.save(buffer, images.numpy(), allow_pickle=False)
payload = buffer.getvalue()

local_url = "http://localhost:8080/invocations"
try:
    response = requests.post(
        local_url,
        data=payload,
        headers={
            'Content-Type': 'application/x-npy'
        }
    )
    response.raise_for_status()
    result = np.frombuffer(response.content, dtype=np.float32)
    print(result)
except Exception as e:
    print(f"发生错误: {e}")
相关推荐
AKAMAI14 小时前
预先构建的CNCF流水线:从Git到在Kubernetes上运行
人工智能·云计算
风途知识百科14 小时前
数字高精度光伏电站灰尘监测系统
人工智能
学废了wuwu15 小时前
机器学习模型评估指标完全解析:准确率、召回率、F1分数等
人工智能·机器学习
西西o15 小时前
MindSpeed MM多模态模型微调实战指南
人工智能
也许是_15 小时前
大模型应用技术之 详解 MCP 原理
人工智能·python
Codebee15 小时前
#专访Ooder架构作者|A2UI时代全栈架构的四大核心之问,深度解析设计取舍
人工智能
亚马逊云开发者15 小时前
如何在亚马逊云科技部署高可用MaxKB知识库应用
人工智能
亚里随笔16 小时前
突破性框架TRAPO:统一监督微调与强化学习的新范式,显著提升大语言模型推理能力
人工智能·深度学习·机器学习·语言模型·llm·rlhf
牛客企业服务16 小时前
AI面试实用性解析:不是“能不能用”,而是“怎么用好”
人工智能·面试·职场和发展
MicroTech202517 小时前
激光点云快速配准算法创新突破,MLGO微算法科技发布革命性点云配准算法技术
人工智能·科技·算法