leetcode - 2461. Maximum Sum of Distinct Subarrays With Length K

Description

You are given an integer array nums and an integer k. Find the maximum subarray sum of all the subarrays of nums that meet the following conditions:

复制代码
The length of the subarray is k, and
All the elements of the subarray are distinct.
Return the maximum subarray sum of all the subarrays that meet the conditions. If no subarray meets the conditions, return 0.

A subarray is a contiguous non-empty sequence of elements within an array.

Example 1:

复制代码
Input: nums = [1,5,4,2,9,9,9], k = 3
Output: 15
Explanation: The subarrays of nums with length 3 are:
- [1,5,4] which meets the requirements and has a sum of 10.
- [5,4,2] which meets the requirements and has a sum of 11.
- [4,2,9] which meets the requirements and has a sum of 15.
- [2,9,9] which does not meet the requirements because the element 9 is repeated.
- [9,9,9] which does not meet the requirements because the element 9 is repeated.
We return 15 because it is the maximum subarray sum of all the subarrays that meet the conditions

Example 2:

复制代码
Input: nums = [4,4,4], k = 3
Output: 0
Explanation: The subarrays of nums with length 3 are:
- [4,4,4] which does not meet the requirements because the element 4 is repeated.
We return 0 because no subarrays meet the conditions.

Constraints:

复制代码
1 <= k <= nums.length <= 10^5
1 <= nums[i] <= 10^5

Solution

Sliding window (TLE)

Use a sliding window to store all the elements we have visited. When the current element is in the sliding window, pop from left until it doesn't exist.

Time complexity: o ( n 2 ) o(n^2) o(n2)

Space complexity: o ( n ) o(n) o(n)

Sliding window + set

Previous solution will exceed the time limit because list's in has o ( n ) o(n) o(n) complexity. To mitigate this, we could use an additional set to store all the elements.

Time complexity: o ( n ) o(n) o(n)

Space complexity: o ( n ) o(n) o(n)

Code

Sliding window (TLE)

python3 复制代码
class Solution:
    def maximumSubarraySum(self, nums: List[int], k: int) -> int:
        sliding_window = collections.deque([])
        cur_sum = 0
        max_sum = 0
        for each_num in nums:
            while each_num in sliding_window or len(sliding_window) == k:
                pop_ele = sliding_window.popleft()
                cur_sum -= pop_ele
            cur_sum += each_num
            sliding_window.append(each_num)
            if len(sliding_window) == k:
                max_sum = max(max_sum, cur_sum)
        return max_sum

Sliding window + set

python3 复制代码
class Solution:
    def maximumSubarraySum(self, nums: List[int], k: int) -> int:
        sliding_window = collections.deque([])
        window_ele = set()
        cur_sum = 0
        max_sum = 0
        for each_num in nums:
            while each_num in window_ele or len(sliding_window) == k:
                pop_ele = sliding_window.popleft()
                window_ele.remove(pop_ele)
                cur_sum -= pop_ele
            cur_sum += each_num
            sliding_window.append(each_num)
            window_ele.add(each_num)
            if len(sliding_window) == k:
                max_sum = max(max_sum, cur_sum)
        return max_sum
相关推荐
C雨后彩虹4 小时前
任务最优调度
java·数据结构·算法·华为·面试
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
Niuguangshuo6 小时前
EM算法详解:解密“鸡生蛋“的机器学习困局
算法·机器学习·概率论
a3158238067 小时前
Android 大图显示策略优化显示(一)
android·算法·图片加载·大图片
一条大祥脚7 小时前
26.1.9 轮廓线dp 状压最短路 构造
数据结构·c++·算法
鲨莎分不晴7 小时前
反向传播的数学本质:链式法则与动态规划的完美共舞
算法·动态规划
sonadorje7 小时前
逻辑回归中的条件概率
算法·机器学习·逻辑回归
cici158747 小时前
基于Pan-Tompkins算法的ECG信号HRV提取方案
算法
McGrady-1758 小时前
拓扑导航 vs 几何导航的具体实现位置
算法