leetcode - 2461. Maximum Sum of Distinct Subarrays With Length K

Description

You are given an integer array nums and an integer k. Find the maximum subarray sum of all the subarrays of nums that meet the following conditions:

The length of the subarray is k, and
All the elements of the subarray are distinct.
Return the maximum subarray sum of all the subarrays that meet the conditions. If no subarray meets the conditions, return 0.

A subarray is a contiguous non-empty sequence of elements within an array.

Example 1:

Input: nums = [1,5,4,2,9,9,9], k = 3
Output: 15
Explanation: The subarrays of nums with length 3 are:
- [1,5,4] which meets the requirements and has a sum of 10.
- [5,4,2] which meets the requirements and has a sum of 11.
- [4,2,9] which meets the requirements and has a sum of 15.
- [2,9,9] which does not meet the requirements because the element 9 is repeated.
- [9,9,9] which does not meet the requirements because the element 9 is repeated.
We return 15 because it is the maximum subarray sum of all the subarrays that meet the conditions

Example 2:

Input: nums = [4,4,4], k = 3
Output: 0
Explanation: The subarrays of nums with length 3 are:
- [4,4,4] which does not meet the requirements because the element 4 is repeated.
We return 0 because no subarrays meet the conditions.

Constraints:

1 <= k <= nums.length <= 10^5
1 <= nums[i] <= 10^5

Solution

Sliding window (TLE)

Use a sliding window to store all the elements we have visited. When the current element is in the sliding window, pop from left until it doesn't exist.

Time complexity: o ( n 2 ) o(n^2) o(n2)

Space complexity: o ( n ) o(n) o(n)

Sliding window + set

Previous solution will exceed the time limit because list's in has o ( n ) o(n) o(n) complexity. To mitigate this, we could use an additional set to store all the elements.

Time complexity: o ( n ) o(n) o(n)

Space complexity: o ( n ) o(n) o(n)

Code

Sliding window (TLE)

python3 复制代码
class Solution:
    def maximumSubarraySum(self, nums: List[int], k: int) -> int:
        sliding_window = collections.deque([])
        cur_sum = 0
        max_sum = 0
        for each_num in nums:
            while each_num in sliding_window or len(sliding_window) == k:
                pop_ele = sliding_window.popleft()
                cur_sum -= pop_ele
            cur_sum += each_num
            sliding_window.append(each_num)
            if len(sliding_window) == k:
                max_sum = max(max_sum, cur_sum)
        return max_sum

Sliding window + set

python3 复制代码
class Solution:
    def maximumSubarraySum(self, nums: List[int], k: int) -> int:
        sliding_window = collections.deque([])
        window_ele = set()
        cur_sum = 0
        max_sum = 0
        for each_num in nums:
            while each_num in window_ele or len(sliding_window) == k:
                pop_ele = sliding_window.popleft()
                window_ele.remove(pop_ele)
                cur_sum -= pop_ele
            cur_sum += each_num
            sliding_window.append(each_num)
            window_ele.add(each_num)
            if len(sliding_window) == k:
                max_sum = max(max_sum, cur_sum)
        return max_sum
相关推荐
✿ ༺ ོIT技术༻8 分钟前
剑指offer第2版:搜索算法(二分/DFS/BFS)
数据结构·算法
金融OG13 分钟前
100.13 AI量化面试题:支持向量机(SVM)如何处理高维和复杂数据集?
人工智能·python·算法·机器学习·支持向量机·数学建模·金融
技术小泽26 分钟前
算法基础之排序算法大总结1!!
java·数据结构·后端·算法·排序算法
云卓SKYDROID1 小时前
无人机之无线传输技术!
科技·算法·无人机·科普·云卓科技
蓝色洛特1 小时前
【matlab优化算法-17期】基于DBO算法的微电网多目标优化调度
开发语言·算法·matlab
豆豆酱2 小时前
强化学习到大模型训练理论概要(三)
算法
羽觞醉月112 小时前
C++基础 | 线程`std::thread`
开发语言·c++·算法
南宫生3 小时前
力扣动态规划-26【算法学习day.120】
java·数据结构·算法·leetcode·动态规划
不想编程小谭3 小时前
从小白开始的动态规划
c++·算法·动态规划
一只码代码的章鱼3 小时前
数据结构与算法-动态规划-状态机(股票问题,密码设计)
算法·动态规划·代理模式