卷积运算和卷积定理

卷积运算

卷积运算是信号处理、图像处理和深度学习中的核心概念,用于表示两个函数之间的相互作用。它将一个函数通过滑动窗口的方式与另一个函数结合,产生一个新的函数,反映两者的重叠程度。


1. 定义
  • 连续信号的卷积: 给定两个连续函数 f(t) 和 g(t) ,它们的卷积定义为:

    其中:

    • t 是输出信号的时间变量。
    • 是中间变量,用于计算 f 和 g 的重叠。
  • 离散信号的卷积: 给定两个离散序列 f[n] 和 g[n] ,它们的卷积定义为:

    在实际计算中,信号长度通常有限,求和区间取有限范围。


2. 卷积运算的直观理解

卷积可以理解为:

  1. 将一个信号 g(t) 翻转后平移,与另一个信号 f(t) 逐点相乘并求和,得到新的信号。
  2. 在图像处理中,卷积用于提取特征,比如边缘检测、模糊化等。

卷积定理

卷积定理揭示了卷积运算在时域和频域之间的重要关系,是信号处理和傅里叶分析的重要理论。


1. 定理陈述

卷积定理说明:两个信号在时域中的卷积等价于它们在频域中的乘积

  • 连续信号的卷积定理: 如果 F(ω) 和 G(ω) 分别是 f(t) 和 g(t) 的傅里叶变换,则有:

    即,时域卷积对应于频域相乘。

  • 离散信号的卷积定理: 如果 F[k] 和 G[k] 分别是 f[n] 和 g[n] 的离散傅里叶变换(DFT),则:

    同样,时域卷积等价于频域相乘。


2. 定理的逆向形式

卷积定理的逆向形式: 两个信号在频域中的卷积等价于它们在时域中的乘积

卷积的计算示例

1. 离散卷积的计算

给定两个序列:

计算它们的离散卷积:

手动计算结果:

  • 对 n=0 :
  • 对 n=1 :
  • 对 n=2 :
  • 对 n=3 :
  • 对 n=4 :

最终结果:

2. Python实现卷积

使用numpy库计算卷积:

python 复制代码
import numpy as np

# 定义两个信号
f = np.array([1, 2, 3])
g = np.array([0, 1, 0.5])

# 计算卷积
result = np.convolve(f, g, mode='full')
print("卷积结果:", result)
相关推荐
leaf_lucky18 分钟前
机器学习——互信息(超详细)
人工智能·机器学习
图灵学术计算机论文辅导27 分钟前
1+1>2!特征融合如何让目标检测更懂 “场景”?
论文阅读·人工智能·经验分享·考研·机器学习·计算机视觉·目标跟踪
计算机毕设定制辅导-无忧学长1 小时前
InfluxDB 与 Python 框架结合:Django 应用案例(二)
python·django·sqlite
java1234_小锋1 小时前
[免费]基于Python的招聘职位信息推荐系统(猎聘网数据分析与可视化)(Django+requests库)【论文+源码+SQL脚本】
python·数据分析·django·python招聘系统·django招聘
im_AMBER1 小时前
学习日志23 python
python·学习
生信大杂烩1 小时前
基于成像空间转录组技术的肿瘤亚克隆CNV原位推断方法
python·数据分析
金井PRATHAMA1 小时前
分布内侧内嗅皮层的层Ⅱ或层Ⅲ的网格细胞(grid cells)对NLP中的深层语义分析的积极影响和启示
人工智能·深度学习·神经网络·机器学习·自然语言处理·知识图谱
IT项目分享2 小时前
Python字典完全指南:从基础到实战(2025版)
开发语言·python·it项目网
这里有鱼汤2 小时前
全网最通俗易懂的趋势判断神器:卡尔曼滤波原来这么实用!
后端·python·程序员
这里有鱼汤2 小时前
年化96%的小市值策略的选股逻辑源码来了
后端·python