卷积运算和卷积定理

卷积运算

卷积运算是信号处理、图像处理和深度学习中的核心概念,用于表示两个函数之间的相互作用。它将一个函数通过滑动窗口的方式与另一个函数结合,产生一个新的函数,反映两者的重叠程度。


1. 定义
  • 连续信号的卷积: 给定两个连续函数 f(t) 和 g(t) ,它们的卷积定义为:

    其中:

    • t 是输出信号的时间变量。
    • 是中间变量,用于计算 f 和 g 的重叠。
  • 离散信号的卷积: 给定两个离散序列 f[n] 和 g[n] ,它们的卷积定义为:

    在实际计算中,信号长度通常有限,求和区间取有限范围。


2. 卷积运算的直观理解

卷积可以理解为:

  1. 将一个信号 g(t) 翻转后平移,与另一个信号 f(t) 逐点相乘并求和,得到新的信号。
  2. 在图像处理中,卷积用于提取特征,比如边缘检测、模糊化等。

卷积定理

卷积定理揭示了卷积运算在时域和频域之间的重要关系,是信号处理和傅里叶分析的重要理论。


1. 定理陈述

卷积定理说明:两个信号在时域中的卷积等价于它们在频域中的乘积

  • 连续信号的卷积定理: 如果 F(ω) 和 G(ω) 分别是 f(t) 和 g(t) 的傅里叶变换,则有:

    即,时域卷积对应于频域相乘。

  • 离散信号的卷积定理: 如果 F[k] 和 G[k] 分别是 f[n] 和 g[n] 的离散傅里叶变换(DFT),则:

    同样,时域卷积等价于频域相乘。


2. 定理的逆向形式

卷积定理的逆向形式: 两个信号在频域中的卷积等价于它们在时域中的乘积

卷积的计算示例

1. 离散卷积的计算

给定两个序列:

计算它们的离散卷积:

手动计算结果:

  • 对 n=0 :
  • 对 n=1 :
  • 对 n=2 :
  • 对 n=3 :
  • 对 n=4 :

最终结果:

2. Python实现卷积

使用numpy库计算卷积:

python 复制代码
import numpy as np

# 定义两个信号
f = np.array([1, 2, 3])
g = np.array([0, 1, 0.5])

# 计算卷积
result = np.convolve(f, g, mode='full')
print("卷积结果:", result)
相关推荐
递归不收敛1 小时前
吴恩达机器学习课程(PyTorch 适配)学习笔记大纲
pytorch·学习·机器学习
递归不收敛4 小时前
吴恩达机器学习课程(PyTorch适配)学习笔记:2.4 激活函数与多类别处理
pytorch·学习·机器学习
F_D_Z4 小时前
数据集相关类代码回顾理解 | StratifiedShuffleSplit\transforms.ToTensor\Counter
python·torchvision·transforms
tao3556675 小时前
【Python刷力扣hot100】283. Move Zeroes
开发语言·python·leetcode
小宁爱Python6 小时前
从零搭建 RAG 智能问答系统1:基于 LlamaIndex 与 Chainlit实现最简单的聊天助手
人工智能·后端·python
湖南人爱科技有限公司6 小时前
RaPhp和Python某音最新bd-ticket-guard-client-data加密算法解析(视频评论)
android·python·php·音视频·爬山算法·raphp
~kiss~7 小时前
K-means损失函数-收敛证明
算法·机器学习·kmeans
eqwaak07 小时前
数据预处理与可视化流水线:Pandas Profiling + Altair 实战指南
开发语言·python·信息可视化·数据挖掘·数据分析·pandas
心态特好8 小时前
详解WebSocket及其妙用
java·python·websocket·网络协议
生物小卡拉9 小时前
R脚本--表达矩阵与特征矩阵相关性分析
笔记·学习·机器学习