Flink学习连载第二篇-使用flink编写WordCount(多种情况演示)

使用Flink编写代码,步骤非常固定,大概分为以下几步,只要牢牢抓住步骤,基本轻松拿下:

  1. env-准备环境

  2. source-加载数据

  3. transformation-数据处理转换

  4. sink-数据输出

  5. execute-执行

DataStream API 开发

//nightlies.apache.org/flink/flink-docs-release-1.13/docs/dev/datastream/overview/

0. 添加依赖

XML 复制代码
<properties>
  <flink.version>1.13.6</flink.version>
</properties>

<dependencies>
  <dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-streaming-java_2.11</artifactId>
    <version>${flink.version}</version>
  </dependency>

  <dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-java</artifactId>
    <version>${flink.version}</version>
  </dependency>

  <dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-clients_2.11</artifactId>
    <version>${flink.version}</version>
  </dependency>

  <dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table-api-java-bridge_2.11</artifactId>
    <version>${flink.version}</version>
  </dependency>

  <dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table-planner-blink_2.11</artifactId>
    <version>${flink.version}</version>
  </dependency>

  <dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-shaded-hadoop-2-uber</artifactId>
    <version>2.7.5-10.0</version>
  </dependency>

  <dependency>
    <groupId>log4j</groupId>
    <artifactId>log4j</artifactId>
    <version>1.2.17</version>
  </dependency>

  <dependency>
    <groupId>org.projectlombok</groupId>
    <artifactId>lombok</artifactId>
    <version>1.18.24</version>
  </dependency>

</dependencies>

<build>
  <extensions>
    <extension>
      <groupId>org.apache.maven.wagon</groupId>
      <artifactId>wagon-ssh</artifactId>
      <version>2.8</version>
    </extension>
  </extensions>

  <plugins>
    <plugin>
      <groupId>org.codehaus.mojo</groupId>
      <artifactId>wagon-maven-plugin</artifactId>
      <version>1.0</version>
      <configuration>
        <!--上传的本地jar的位置-->
        <fromFile>target/${project.build.finalName}.jar</fromFile>
        <!--远程拷贝的地址-->
        <url>scp://root:root@bigdata01:/opt/app</url>
      </configuration>
    </plugin>
  </plugins>

</build>

编写代码

java 复制代码
package com.bigdata.day01;


import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;


public class WordCount01 {

    /**
     * 1. env-准备环境
     * 2. source-加载数据
     * 3. transformation-数据处理转换
     * 4. sink-数据输出
     * 5. execute-执行
     */

    public static void main(String[] args) throws Exception {
        // 导入常用类时要注意   不管是在本地开发运行还是在集群上运行,都这么写,非常方便
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 这个是 自动 ,根据流的性质,决定是批处理还是流处理
        //env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        // 批处理流, 一口气把数据算出来
        // env.setRuntimeMode(RuntimeExecutionMode.BATCH);
        // 流处理,默认是这个  可以通过打印批和流的处理结果,体会流和批的含义
        env.setRuntimeMode(RuntimeExecutionMode.STREAMING);

        // 获取数据  多态的写法 DataStreamSource 它是 DataStream 的子类
        DataStream<String> dataStream01 = env.fromElements("spark flink kafka", "spark sqoop flink", "kakfa hadoop flink");

        DataStream<String> flatMapStream = dataStream01.flatMap(new FlatMapFunction<String, String>() {

            @Override
            public void flatMap(String line, Collector<String> collector) throws Exception {
                String[] arr = line.split(" ");
                for (String word : arr) {
                    // 循环遍历每一个切割完的数据,放入到收集器中,就可以形成一个新的DataStream
                    collector.collect(word);
                }
            }
        });
        //flatMapStream.print();
        // Tuple2 指的是2元组
        DataStream<Tuple2<String, Integer>> mapStream = flatMapStream.map(new MapFunction<String, Tuple2<String, Integer>>() {

            @Override
            public Tuple2<String, Integer> map(String word) throws Exception {
                return Tuple2.of(word, 1); // ("hello",1)
            }
        });
        DataStream<Tuple2<String, Integer>> sumResult = mapStream.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
            @Override
            public String getKey(Tuple2<String, Integer> tuple2) throws Exception {
                return tuple2.f0;
            }
            // 此处的1 指的是元组的第二个元素,进行相加的意思
        }).sum(1);
        sumResult.print();
        // 执行
        env.execute();
    }
}

查看本机的CPU的逻辑处理器的数量,逻辑处理器的数量就是你的分区数量。

12> spark
13> kakfa
11> spark
11> flink
11> kafka
13> hadoop
12> sqoop
13> flink
12> flink

前面的数字是分区数,默认跟逻辑处理器的数量有关系。

对结果进行解释:

什么是批,什么是流?

批处理结果:前面的序号代表分区

流处理结果:

也可以通过如下方式修改分区数量:

 env.setParallelism(2);

关于并行度的代码演示:

系统以及算子都可以设置并行度,或者获取并行度

java 复制代码
package com.bigdata.day01;


import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;


public class WordCount01 {

    /**
     * 1. env-准备环境
     * 2. source-加载数据
     * 3. transformation-数据处理转换
     * 4. sink-数据输出
     * 5. execute-执行
     */

    public static void main(String[] args) throws Exception {
        // 导入常用类时要注意   不管是在本地开发运行还是在集群上运行,都这么写,非常方便
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 这个是 自动 ,根据流的性质,决定是批处理还是流处理
        //env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        // 批处理流, 一口气把数据算出来
        // env.setRuntimeMode(RuntimeExecutionMode.BATCH);
        // 流处理,默认是这个  可以通过打印批和流的处理结果,体会流和批的含义
        env.setRuntimeMode(RuntimeExecutionMode.STREAMING);
        // 将任务的并行度设置为2
        // env.setParallelism(2);
        // 通过这个获取系统的并行度
        int parallelism = env.getParallelism();
        System.out.println(parallelism);

        // 获取数据  多态的写法 DataStreamSource 它是 DataStream 的子类
        DataStream<String> dataStream01 = env.fromElements("spark flink kafka", "spark sqoop flink", "kakfa hadoop flink");

        DataStream<String> flatMapStream = dataStream01.flatMap(new FlatMapFunction<String, String>() {

            @Override
            public void flatMap(String line, Collector<String> collector) throws Exception {
                String[] arr = line.split(" ");
                for (String word : arr) {
                    // 循环遍历每一个切割完的数据,放入到收集器中,就可以形成一个新的DataStream
                    collector.collect(word);
                }
            }
        });
        // 每一个算子也有自己的并行度,一般跟系统保持一致
        System.out.println("flatMap的并行度:"+flatMapStream.getParallelism());
        //flatMapStream.print();
        // Tuple2 指的是2元组
        DataStream<Tuple2<String, Integer>> mapStream = flatMapStream.map(new MapFunction<String, Tuple2<String, Integer>>() {

            @Override
            public Tuple2<String, Integer> map(String word) throws Exception {
                return Tuple2.of(word, 1); // ("hello",1)
            }
        });
        DataStream<Tuple2<String, Integer>> sumResult = mapStream.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
            @Override
            public String getKey(Tuple2<String, Integer> tuple2) throws Exception {
                return tuple2.f0;
            }
            // 此处的1 指的是元组的第二个元组,进行相加的意思
        }).sum(1);
        sumResult.print();
        // 执行
        env.execute();
    }
}
  1. 打包、上传

文件夹不需要提前准备好,它可以帮我创建

  1. 提交我们自己开发打包的任务

    flink run -c com.bigdata.day01.WordCount01 /opt/app/FlinkDemo-1.0-SNAPSHOT.jar

去界面中查看运行结果:

因为你这个是集群运行的,所以标准输出流中查看,假如第一台没有,去第二台查看,一直点。

获取 主函数 参数工具类

可以通过外部传参的方式给定一个路径

以下代码可以做到,假如给定路径,就获取路径的数据,假如没给,就读取默认数据:

java 复制代码
package com.bigdata.day01;


import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;


public class WordCount02 {

    /**
     * 1. env-准备环境
     * 2. source-加载数据
     * 3. transformation-数据处理转换
     * 4. sink-数据输出
     * 5. execute-执行
     */

    public static void main(String[] args) throws Exception {
        // 导入常用类时要注意   不管是在本地开发运行还是在集群上运行,都这么写,非常方便
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 这个是 自动 ,根据流的性质,决定是批处理还是流处理
        //env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        // 批处理流, 一口气把数据算出来
        // env.setRuntimeMode(RuntimeExecutionMode.BATCH);
        // 流处理,默认是这个  可以通过打印批和流的处理结果,体会流和批的含义
        env.setRuntimeMode(RuntimeExecutionMode.STREAMING);
        // 将任务的并行度设置为2
        // env.setParallelism(2);
        // 通过这个获取系统的并行度
        int parallelism = env.getParallelism();
        System.out.println(parallelism);

        // 获取数据  多态的写法 DataStreamSource 它是 DataStream 的子类
        // 连着写的本质就是 因为每一个算子的返回值都是DataStream的子类,所以可以这么写
        // 以下代码中路径是写死的,能不能通过外部传参进来,当然可以! agrs
        DataStream<String> dataStream = null;
        System.out.println(args.length);
        if(args.length !=0){
            String path = args[0];
            dataStream =  env.readTextFile(path);
        }else{
            dataStream =  env.fromElements("spark flink kafka", "spark sqoop flink", "kakfa hadoop flink");
        }



        dataStream.flatMap(new FlatMapFunction<String, String>() {

            @Override
            public void flatMap(String line, Collector<String> collector) throws Exception {
                String[] arr = line.split(" ");
                for (String word : arr) {
                    // 循环遍历每一个切割完的数据,放入到收集器中,就可以形成一个新的DataStream
                    collector.collect(word);
                }
            }
        }).map(new MapFunction<String, Tuple2<String, Integer>>() {

            @Override
            public Tuple2<String, Integer> map(String word) throws Exception {
                return Tuple2.of(word, 1); // ("hello",1)
            }
        }).keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
            @Override
            public String getKey(Tuple2<String, Integer> tuple2) throws Exception {
                return tuple2.f0;
            }
            // 此处的1 指的是元组的第二个元组,进行相加的意思
        }).sum(1).print();
        // 执行
        env.execute();
    }
}

flink run -c com.bigdata.day01.Demo02 FlinkDemo-1.0-SNAPSHOT.jar /home/wc.txt

这样做,跟我们以前的做法还是不一样。以前的运行方式是这样的

flink run /opt/installs/flink/examples/batch/WordCount.jar --input /home/wc.txt

这个写法,传递参数的时候,带有--字样,而我们的没有。

以上代码进行升级,我想将参数前面追加一个 --input 这样,怎么写?

java 复制代码
ParameterTool parameterTool = ParameterTool.fromArgs(args);
if(parameterTool.has("output")){
    path = parameterTool.get("output");
}

在代码中的使用:
ParameterTool parameterTool = ParameterTool.fromArgs(args);
        String output = "";
        if (parameterTool.has("output")) {
            output = parameterTool.get("output");
            System.out.println("指定了输出路径使用:" + output);
        } else {
            output = "hdfs://node01:9820/wordcount/output47_";
            System.out.println("可以指定输出路径使用 --output ,没有指定使用默认的:" + output);
        }

升级过的代码:

java 复制代码
package com.bigdata.day01;


import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;


public class WordCount02 {

    /**
     * 1. env-准备环境
     * 2. source-加载数据
     * 3. transformation-数据处理转换
     * 4. sink-数据输出
     * 5. execute-执行
     */

    public static void main(String[] args) throws Exception {
        // 导入常用类时要注意   不管是在本地开发运行还是在集群上运行,都这么写,非常方便
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 这个是 自动 ,根据流的性质,决定是批处理还是流处理
        //env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        // 批处理流, 一口气把数据算出来
        // env.setRuntimeMode(RuntimeExecutionMode.BATCH);
        // 流处理,默认是这个  可以通过打印批和流的处理结果,体会流和批的含义
        env.setRuntimeMode(RuntimeExecutionMode.STREAMING);
        // 将任务的并行度设置为2
        // env.setParallelism(2);
        // 通过这个获取系统的并行度
        int parallelism = env.getParallelism();
        System.out.println(parallelism);

        // 获取数据  多态的写法 DataStreamSource 它是 DataStream 的子类
        // 连着写的本质就是 因为每一个算子的返回值都是DataStream的子类,所以可以这么写
        // 以下代码中路径是写死的,能不能通过外部传参进来,当然可以! agrs
        DataStream<String> dataStream = null;
        System.out.println(args.length);
        if(args.length !=0){

            String path ;
            ParameterTool parameterTool = ParameterTool.fromArgs(args);
            if(parameterTool.has("input")){
                path = parameterTool.get("input");
            }else{
                path = args[0];
            }

            dataStream =  env.readTextFile(path);
        }else{
            dataStream =  env.fromElements("spark flink kafka", "spark sqoop flink", "kakfa hadoop flink");
        }



        dataStream.flatMap(new FlatMapFunction<String, String>() {

            @Override
            public void flatMap(String line, Collector<String> collector) throws Exception {
                String[] arr = line.split(" ");
                for (String word : arr) {
                    // 循环遍历每一个切割完的数据,放入到收集器中,就可以形成一个新的DataStream
                    collector.collect(word);
                }
            }
        }).map(new MapFunction<String, Tuple2<String, Integer>>() {

            @Override
            public Tuple2<String, Integer> map(String word) throws Exception {
                return Tuple2.of(word, 1); // ("hello",1)
            }
        }).keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
            @Override
            public String getKey(Tuple2<String, Integer> tuple2) throws Exception {
                return tuple2.f0;
            }
            // 此处的1 指的是元组的第二个元组,进行相加的意思
        }).sum(1).print();
        // 执行
        env.execute();
    }
}

DataStream (Lambda表达式-扩展 了解 )

java 复制代码
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

import java.util.Arrays;

/**
 * Desc 演示Flink-DataStream-流批一体API完成批处理WordCount
 * 使用Java8的lambda表示完成函数式风格的WordCount
 */
public class WordCount02 {
    public static void main(String[] args) throws Exception {
        //TODO 1.env-准备环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //env.setRuntimeMode(RuntimeExecutionMode.STREAMING);//指定计算模式为流
        //env.setRuntimeMode(RuntimeExecutionMode.BATCH);//指定计算模式为批
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);//自动
        //不设置的话默认是流模式defaultValue(RuntimeExecutionMode.STREAMING)

        //TODO 2.source-加载数据
        DataStream<String> dataStream = env.fromElements("flink hadoop spark", "flink hadoop spark", "flink hadoop", "flink");

        //TODO 3.transformation-数据转换处理
        //3.1对每一行数据进行分割并压扁
        /*
        public interface FlatMapFunction<T, O> extends Function, Serializable {
            void flatMap(T value, Collector<O> out) throws Exception;
        }
        */
        /*DataStream<String> wordsDS = dataStream.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public void flatMap(String value, Collector<String> out) throws Exception {
                String[] words = value.split(" ");
                for (String word : words) {
                    out.collect(word);
                }
            }
        });*/

        //注意:Java8的函数的语法/lambda表达式的语法: (参数)->{函数体}
        DataStream<String> wordsDS = dataStream.flatMap(
            (String value, Collector<String> out) -> {
                String[] words = value.split(" ");
                for (String word : words) {
                    out.collect(word);
                }
            }
        ).returns(Types.STRING);


        //3.2 每个单词记为<单词,1>
        /*
        public interface MapFunction<T, O> extends Function, Serializable {
            O map(T value) throws Exception;
         }
         */
        /*DataStream<Tuple2<String, Integer>> wordAndOneDS = wordsDS.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                return Tuple2.of(value, 1);
            }
        });*/
        DataStream<Tuple2<String, Integer>> wordAndOneDS = wordsDS.map(
            (String value) -> Tuple2.of(value, 1)
        ).returns(Types.TUPLE(Types.STRING, Types.INT));

        //3.3分组
        //注意:DataSet中分组用groupBy,DataStream中分组用keyBy
        //KeyedStream<Tuple2<String, Integer>, Tuple> keyedDS = wordAndOneDS.keyBy(0);
        /*
        public interface KeySelector<IN, KEY> extends Function, Serializable {
            KEY getKey(IN value) throws Exception;
        }
         */
        /*KeyedStream<Tuple2<String, Integer>, String> keyedDS = wordAndOneDS.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
            @Override
            public String getKey(Tuple2<String, Integer> value) throws Exception {
                return value.f0;
            }
        });*/
        KeyedStream<Tuple2<String, Integer>, String> keyedDS = wordAndOneDS.keyBy((Tuple2<String, Integer> value) -> value.f0);

        //3.4聚合
        SingleOutputStreamOperator<Tuple2<String, Integer>> result = keyedDS.sum(1);

        //TODO 4.sink-数据输出
        result.print();

        //TODO 5.execute-执行
        env.execute();
    }
}

此处有一个大坑,就是使用完lambda表达式以后,需要添加一个returns(Types.STRING); 否则报错,这样的话,使用lambda也不是特别快了。

连着写的版本如下:

java 复制代码
package com.bigdata.day01;


import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;


public class WordCount03 {

    /**
     * 1. env-准备环境
     * 2. source-加载数据
     * 3. transformation-数据处理转换
     * 4. sink-数据输出
     * 5. execute-执行
     */

    public static void main(String[] args) throws Exception {
        // 导入常用类时要注意   不管是在本地开发运行还是在集群上运行,都这么写,非常方便
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 这个是 自动 ,根据流的性质,决定是批处理还是流处理
        //env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        // 批处理流, 一口气把数据算出来
        // env.setRuntimeMode(RuntimeExecutionMode.BATCH);
        // 流处理,默认是这个  可以通过打印批和流的处理结果,体会流和批的含义
        //env.setRuntimeMode(RuntimeExecutionMode.STREAMING);
        // 将任务的并行度设置为2
        // env.setParallelism(2);
        // 通过这个获取系统的并行度
        int parallelism = env.getParallelism();
        System.out.println(parallelism);

        // 获取数据  多态的写法 DataStreamSource 它是 DataStream 的子类
        // 连着写的本质就是 因为每一个算子的返回值都是DataStream的子类,所以可以这么写
        // 以下代码中路径是写死的,能不能通过外部传参进来,当然可以! agrs
        DataStream<String> dataStream = null;
        System.out.println(args.length);
        if(args.length !=0){

            String path ;
            ParameterTool parameterTool = ParameterTool.fromArgs(args);
            if(parameterTool.has("input")){
                path = parameterTool.get("input");
            }else{
                path = args[0];
            }

            dataStream =  env.readTextFile(path);
        }else{
            dataStream =  env.fromElements("spark flink kafka", "spark sqoop flink", "kakfa hadoop flink");
        }



        dataStream.flatMap((String line, Collector<String> collector) -> {
            String[] arr = line.split(" ");
            for (String word : arr) {
                // 循环遍历每一个切割完的数据,放入到收集器中,就可以形成一个新的DataStream
                collector.collect(word);
            }
        }).returns(Types.STRING).map((String word)-> {
            return Tuple2.of(word, 1); // ("hello",1)
        }).returns(Types.TUPLE(Types.STRING, Types.INT))
                .keyBy((Tuple2<String, Integer> tuple2)-> {
            return tuple2.f0;
        }).sum(1).print();
        // 执行
        env.execute();
    }
}
相关推荐
weixin_307779131 小时前
PySpark得到Apache Spark运行时占用集群资源的比例的方法
大数据·python·spark
dazhong20122 小时前
Hadoop 实战笔记(一) -- Windows 安装 Hadoop 3.x
大数据·hadoop·windows
晒足以百八十3 小时前
大数据技术实训:Hadoop完全分布式运行模式配置
大数据·hadoop·分布式
金智维科技官方4 小时前
财务自动化管理系统有哪些?
大数据·人工智能·自动化
唐山柳林4 小时前
灌区闸门自动化控制系统-精准渠道量测水-灌区现代化建设
大数据·运维·科技·物联网·自动化
王子良.5 小时前
深入解析 Flink 与 Spark 的性能差异
大数据·flink·spark
多用户商城系统5 小时前
AI在零售行业中的应用:提升顾客体验与运营效率
大数据·人工智能·线上线下新零售
大力财经6 小时前
抖音生活服务举办直营服务商年度峰会 服务商支付交易额同比涨85%
大数据·人工智能·生活
赛逸展张胜9 小时前
CES Asia 2025科技盛宴,AI智能体成焦点
大数据·人工智能·科技
Andya_net12 小时前
Git | git reset命令详解
大数据·git·elasticsearch