【论文解析】HAQ: Hardware-Aware Automated Quantization With Mixed Precision

作者及发刊详情

@inproceedings{haq,

author = {Wang, Kuan and Liu, Zhijian and Lin, Yujun and Lin, Ji and Han, Song},

title = {HAQ: Hardware-Aware Automated Quantization With Mixed Precision},

booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},

year = {2019}

}

摘要

Motivation

  • DNN硬件加速器开始支持混合精度(1-8位)进一步提高计算效率,这对找到每一层的最佳位宽提出了一个巨大的挑战:它需要领域专家探索巨大的设计空间,在精度,延迟,能耗和模型大小之间权衡。
  • 当前有很多专用的神经网络专用加速器,但没有为这些加速器设计专用的神经网络优化方法。传统的量化算法忽视了不同的硬件架构,网络所有层都采用一种量化方式。

Contribution

1)自动化

提出了自动量化框架,无需领域专家或基于规则的启发式方法,将人力从探索位宽选择中解放出来

2)硬件感知

该框架在循环指令流中考虑了硬件架构,不依赖中间信号(proxy signal),可以直接减少延迟、能耗和存储

3)专用化

为不同的硬件架构都提出专门的量化策略,完全为目标硬件架构定制,以优化延迟和能耗。

4)设计视角

将计算和访存都考虑在内,为不同的硬件架构提供了不同的量化策略解释

Approach

引入了基于硬件感知的自动量化(HAQ)框架,该框架利用强化学习来自动确定量化策略,并在设计回路中获取硬件加速器的反馈。而不是依赖于代理信号,如FLOPS和模型大小,该文使用一个硬件模拟器来生成直接的反馈信号(延迟和能耗)到RL代理。

Experiment

实验验证平台:

选用模型:

训练数据集:

推理任务

工具:

实验评估

结论

框架有效地减少了1.4-1.95×的延迟和1.9×的能耗,而accu的损失可以忽略不计

参考文献

MIT开源开源项目链接

参考链接:
机器之心@知乎:寻找最佳的神经网络架构,韩松组两篇论文解读
KGback:人工智能和机器学习入门

相关推荐
King.6247 分钟前
行业深度:金融数据治理中的 SQL2API 应用创新
大数据·开发语言·数据库·人工智能·sql·金融
云卓SKYDROID16 分钟前
无人机3S与4S电池技术对比!
人工智能·科技·无人机·科普·云卓科技
2303_Alpha16 分钟前
深度学习入门:神经网络的学习
人工智能·python·深度学习·神经网络·学习·机器学习
Blossom.11822 分钟前
边缘计算与隐私计算的融合:构建数据经济的“隐形护盾“
人工智能·深度学习·神经网络·目标检测·计算机视觉·数据挖掘·边缘计算
Clocky727 分钟前
图像预处理-色彩空间补充,灰度化与二值化
人工智能·计算机视觉
_一条咸鱼_42 分钟前
大厂AI 大模型面试:监督微调(SFT)与强化微调(RFT)原理
人工智能·深度学习·面试
云卓SKYDROID1 小时前
无人机自主导航与路径规划技术要点!
人工智能·科技·无人机·科普·云卓科技
Lx3521 小时前
🌱 《能源消耗悖论:当AI开发遇上碳中和》
人工智能
黑心萝卜三条杠1 小时前
FineLIP:突破 CLIP 文本长度限制,解锁长文本与图像的细粒度对齐
人工智能
道可云1 小时前
道可云人工智能每日资讯|首届世界人工智能电影节在法国尼斯举行
大数据·人工智能·3d·ar·vr