【论文解析】HAQ: Hardware-Aware Automated Quantization With Mixed Precision

作者及发刊详情

@inproceedings{haq,

author = {Wang, Kuan and Liu, Zhijian and Lin, Yujun and Lin, Ji and Han, Song},

title = {HAQ: Hardware-Aware Automated Quantization With Mixed Precision},

booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},

year = {2019}

}

摘要

Motivation

  • DNN硬件加速器开始支持混合精度(1-8位)进一步提高计算效率,这对找到每一层的最佳位宽提出了一个巨大的挑战:它需要领域专家探索巨大的设计空间,在精度,延迟,能耗和模型大小之间权衡。
  • 当前有很多专用的神经网络专用加速器,但没有为这些加速器设计专用的神经网络优化方法。传统的量化算法忽视了不同的硬件架构,网络所有层都采用一种量化方式。

Contribution

1)自动化

提出了自动量化框架,无需领域专家或基于规则的启发式方法,将人力从探索位宽选择中解放出来

2)硬件感知

该框架在循环指令流中考虑了硬件架构,不依赖中间信号(proxy signal),可以直接减少延迟、能耗和存储

3)专用化

为不同的硬件架构都提出专门的量化策略,完全为目标硬件架构定制,以优化延迟和能耗。

4)设计视角

将计算和访存都考虑在内,为不同的硬件架构提供了不同的量化策略解释

Approach

引入了基于硬件感知的自动量化(HAQ)框架,该框架利用强化学习来自动确定量化策略,并在设计回路中获取硬件加速器的反馈。而不是依赖于代理信号,如FLOPS和模型大小,该文使用一个硬件模拟器来生成直接的反馈信号(延迟和能耗)到RL代理。

Experiment

实验验证平台:

选用模型:

训练数据集:

推理任务

工具:

实验评估

结论

框架有效地减少了1.4-1.95×的延迟和1.9×的能耗,而accu的损失可以忽略不计

参考文献

MIT开源开源项目链接

参考链接:
机器之心@知乎:寻找最佳的神经网络架构,韩松组两篇论文解读
KGback:人工智能和机器学习入门

相关推荐
迈火1 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴2 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR3 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢3 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网
whaosoft-1433 小时前
51c自动驾驶~合集14
人工智能
Jinkxs3 小时前
自动化测试的下一站:AI缺陷检测工具如何实现“bug提前预警”?
人工智能·自动化
小幽余生不加糖3 小时前
电路方案分析(二十二)适用于音频应用的25-50W反激电源方案
人工智能·笔记·学习·音视频
柠檬味拥抱4 小时前
优化AI智能体行为:Q学习、深度Q网络与动态规划在复杂任务中的研究
人工智能
玄明Hanko4 小时前
程序员如何使用 cursor 写代码?
人工智能
用户5191495848454 小时前
HITCON CTF 2018 - 单行PHP挑战:会话上传与流过滤器链的极致利用
人工智能·aigc