研0找实习【学nlp】15---我的后续,总结(暂时性完结)

  • 当下进展成果: nlp+transformer+pytorch+huggingface+bert+简历+环境配置+表情识别+文本分类

  • 断更了快1个月,2个礼拜找实习,1个礼拜伤心,1个礼拜想我要干什么......

  • 承认自己的才疏学浅,了解了leetcode,和老师商量了毕设,和学长姐了解了一些他们的秋招情况

  • 准备暂时告一段落,转向研究所当牛马,希望借此积累,哎

  • 找一找图像处理和nlp相关的实习积累,道阻且长,加油!真是可惜,xhs上总会有很多评论,csdn就没有了。但是xhs分享知识真的很局限啊...

以下是一个综合总结,涵盖了你在学习过程中涉及的主题,包括 NLP、Transformer、PyTorch、Hugging Face、BERT、环境配置、表情识别和文本分类等内容。你可以将这些内容整理成简历中的项目经验或技能部分。

综合总结

1. 自然语言处理(NLP)
  • 学习了自然语言处理的基本概念和技术,包括文本预处理、特征提取、模型训练和评估等。
  • 掌握了常用的 NLP 任务,如文本分类、情感分析、命名实体识别等。
2. Transformer 架构
  • 理解了 Transformer 模型的基本原理,包括自注意力机制、位置编码和多头注意力等。
  • 学习了 Transformer 在 NLP 任务中的应用,特别是在序列到序列的任务中(如机器翻译)。
3. PyTorch
  • 掌握了 PyTorch 深度学习框架的基本用法,包括张量操作、自动求导和模型构建。
  • 学习了如何使用 PyTorch 进行模型训练和评估,掌握了优化器和损失函数的使用。
4. Hugging Face
  • 熟悉了 Hugging Face Transformers 库,能够快速加载和使用预训练的 Transformer 模型(如 BERT、GPT-2 等)。
  • 学习了如何使用 Hugging Face 提供的工具进行模型微调和自定义训练。
5. BERT 模型
  • 深入理解了 BERT 模型的结构和工作原理,掌握了其在文本分类和其他 NLP 任务中的应用。
  • 学习了如何使用 BERT 进行特定任务的微调,包括数据准备、模型训练和评估。
6. 环境配置
  • 学会了如何配置深度学习环境,包括安装 PyTorch、Hugging Face 和其他相关库。
  • 熟悉了使用虚拟环境(如 conda 或 venv)来管理项目依赖,确保环境的干净和可重复性。
7. 表情识别
  • 学习了计算机视觉中的表情识别技术,掌握了图像处理和特征提取的方法。
  • 了解了如何使用深度学习模型(如 CNN)进行表情识别任务,并进行模型训练和评估。
8. 文本分类
  • 掌握了文本分类的基本流程,包括数据预处理、特征提取、模型训练和评估。
  • 学习了如何使用 BERT 和其他 NLP 模型进行文本分类任务,提升分类的准确性。

技能总结

  • 编程语言:熟练使用 Python 进行数据处理和模型开发。
  • 深度学习框架:掌握 PyTorch 和 Hugging Face Transformers 库。
  • 自然语言处理:具备 NLP 任务的理论基础和实践经验。
  • 计算机视觉:了解表情识别的基本原理和实现方法。
  • 环境管理:熟悉使用虚拟环境和依赖管理工具。

项目经验

  • 文本分类项目:使用 BERT 模型进行文本分类,完成数据预处理、模型训练和评估,取得了良好的分类效果。
  • 表情识别项目:基于 CNN 模型实现表情识别,进行数据集构建、模型训练和性能评估。

结论

通过学习和实践,我掌握了自然语言处理和计算机视觉领域的基本知识和技能,能够独立完成相关项目,并具备良好的问题解决能力和学习能力。这些经验为我未来的研究和工作奠定了坚实的基础。


你可以根据自己的实际学习和项目经验,调整和补充以上内容,以便在简历中更好地展示你的技能和成就。

相关推荐
Power20246665 分钟前
NLP论文速读(Apple出品)|迈向更好的多模态指令遵循能力评估
人工智能·深度学习·自然语言处理·自动化·nlp
垂杨有暮鸦⊙_⊙6 分钟前
蒙特卡洛方法(Monte Carlo,MC)
人工智能·笔记·机器学习·概率论
初级炼丹师(爱说实话版)40 分钟前
nn.MultiheadAttention返回的注意力权重和标准的计算注意力权重的区别
人工智能·深度学习·机器学习
roman_日积跬步-终至千里41 分钟前
【人工智能基础】计算机视觉
人工智能·计算机视觉
敲代码不忘补水42 分钟前
Python Matplotlib 经典 3D 绘图类型:从二维到三维的可视化解析
开发语言·python·3d·数据分析·numpy·pandas·matplotlib
努力的小好1 小时前
【python】摄像头调用马赛克恶搞
python
AI小杨1 小时前
【数据分析】一、pandas数据处理指南:100个基于pandas数据预处理方法
python·数据挖掘·数据分析·pandas·pandas使用技巧
weixin_431470861 小时前
文本数据分析(nlp)
开发语言·python·深度学习·自然语言处理
終不似少年遊*1 小时前
数据分析-机器学习-第三方库使用基础
python·机器学习·数据挖掘·数据分析·numpy
天天要nx1 小时前
D79【 python 接口自动化学习】- python基础之HTTP
python