MATLAB实现多种群遗传算法(multiple population GA,MPGA)

MATLAB实现多种群遗传算法(multiple population GA,MPGA)

1. 多种群遗传算法简介

多种群遗传算法(multiple population GA,MPGA)是在标准遗传算法(GA)的基础上经过改进并引入多种群的概念而形成的一种优化算法。多种群遗传算法突破了标准遗传算法仅靠单个群体进行遗传进化的框架,引入多个种群同时进行优化搜索。不同的种群被赋予不同的控制参数(如交叉概率、变异概率等),以实现不同的搜索目的。各个种群之间通过特定的操作因子(如移民算子)进行联系,实现多种群的协同进化。最优解的获取是多个种群协同进化的综合结果。

2. 算法流程

多种群遗传算法的主要流程包括:

(1)初始化:设置种群数量、种群规模、交叉概率、变异概率等参数,并初始化各个种群。

(2)选择操作:根据个体的适应度值选择优秀个体进行遗传操作。

(3)交叉操作:对选择的个体进行交叉操作,以产生新的个体。

(4)变异操作:对新个体进行变异操作,以增加种群的多样性。

(5)移民操作:通过移民算子将各种群在进化过程中出现的最优个体定期地引入其他的种群中,实现种群之间的信息交换。

(6)判断收敛:根据迭代次数如果到了预设的迭代次数,则输出最优解;否则,返回步骤(2)继续进化。

3.MATLAB 代码

4. 程序结果

算法运行时间

runtime1 =

1.6544731

遗传算法优化得到的最优目标函数值

bestValue =

1.11702110252982

遗传算法优化得到的最优染色体

bestChrom =

1 至 6 列

8.82708520806725 7.91028217920581 6.84781965885676 6.35901822026773 4.86529713676558 3.49578240257491

7 至 9 列

3.6555307035593 2.45752155848663 1.12487043073628

>>

相关推荐
草莓熊Lotso16 分钟前
C++ STL set 系列完全指南:从底层原理、核心接口到实战场景
开发语言·c++·人工智能·经验分享·网络协议·算法·dubbo
咖啡の猫2 小时前
搭建Python开发环境
开发语言·python
程序猿小蒜3 小时前
基于springboot的共享汽车管理系统开发与设计
java·开发语言·spring boot·后端·spring·汽车
听风吟丶4 小时前
Java 8 Stream API 高级实战:从数据处理到性能优化的深度解析
开发语言·python
hygge9995 小时前
Spring Boot + MyBatis 整合与 MyBatis 原理全解析
java·开发语言·经验分享·spring boot·后端·mybatis
Run_Teenage6 小时前
C++:智能指针的使用及其原理
开发语言·c++·算法
码界奇点7 小时前
Java设计模式精讲从基础到实战的常见模式解析
java·开发语言·设计模式·java-ee·软件工程
四维碎片7 小时前
【Qt】配置安卓开发环境
android·开发语言·qt
西游音月7 小时前
(7)框架搭建:Qt实战项目之主窗体导航栏、状态栏
开发语言·qt
3***49968 小时前
Swift Experience
开发语言·ios·swift