MATLAB实现多种群遗传算法(multiple population GA,MPGA)

MATLAB实现多种群遗传算法(multiple population GA,MPGA)

1. 多种群遗传算法简介

多种群遗传算法(multiple population GA,MPGA)是在标准遗传算法(GA)的基础上经过改进并引入多种群的概念而形成的一种优化算法。多种群遗传算法突破了标准遗传算法仅靠单个群体进行遗传进化的框架,引入多个种群同时进行优化搜索。不同的种群被赋予不同的控制参数(如交叉概率、变异概率等),以实现不同的搜索目的。各个种群之间通过特定的操作因子(如移民算子)进行联系,实现多种群的协同进化。最优解的获取是多个种群协同进化的综合结果。

2. 算法流程

多种群遗传算法的主要流程包括:

(1)初始化:设置种群数量、种群规模、交叉概率、变异概率等参数,并初始化各个种群。

(2)选择操作:根据个体的适应度值选择优秀个体进行遗传操作。

(3)交叉操作:对选择的个体进行交叉操作,以产生新的个体。

(4)变异操作:对新个体进行变异操作,以增加种群的多样性。

(5)移民操作:通过移民算子将各种群在进化过程中出现的最优个体定期地引入其他的种群中,实现种群之间的信息交换。

(6)判断收敛:根据迭代次数如果到了预设的迭代次数,则输出最优解;否则,返回步骤(2)继续进化。

3.MATLAB 代码

4. 程序结果

算法运行时间

runtime1 =

1.6544731

遗传算法优化得到的最优目标函数值

bestValue =

1.11702110252982

遗传算法优化得到的最优染色体

bestChrom =

1 至 6 列

8.82708520806725 7.91028217920581 6.84781965885676 6.35901822026773 4.86529713676558 3.49578240257491

7 至 9 列

3.6555307035593 2.45752155848663 1.12487043073628

>>

相关推荐
数据小爬虫@2 小时前
深入解析:使用 Python 爬虫获取苏宁商品详情
开发语言·爬虫·python
健胃消食片片片片2 小时前
Python爬虫技术:高效数据收集与深度挖掘
开发语言·爬虫·python
王老师青少年编程3 小时前
gesp(C++五级)(14)洛谷:B4071:[GESP202412 五级] 武器强化
开发语言·c++·算法·gesp·csp·信奥赛
一只小bit4 小时前
C++之初识模版
开发语言·c++
王磊鑫4 小时前
C语言小项目——通讯录
c语言·开发语言
钢铁男儿4 小时前
C# 委托和事件(事件)
开发语言·c#
Ai 编码助手5 小时前
在 Go 语言中如何高效地处理集合
开发语言·后端·golang
喜-喜5 小时前
C# HTTP/HTTPS 请求测试小工具
开发语言·http·c#
ℳ₯㎕ddzོꦿ࿐5 小时前
解决Python 在 Flask 开发模式下定时任务启动两次的问题
开发语言·python·flask
一水鉴天5 小时前
为AI聊天工具添加一个知识系统 之63 详细设计 之4:AI操作系统 之2 智能合约
开发语言·人工智能·python