MATLAB实现多种群遗传算法(multiple population GA,MPGA)

MATLAB实现多种群遗传算法(multiple population GA,MPGA)

1. 多种群遗传算法简介

多种群遗传算法(multiple population GA,MPGA)是在标准遗传算法(GA)的基础上经过改进并引入多种群的概念而形成的一种优化算法。多种群遗传算法突破了标准遗传算法仅靠单个群体进行遗传进化的框架,引入多个种群同时进行优化搜索。不同的种群被赋予不同的控制参数(如交叉概率、变异概率等),以实现不同的搜索目的。各个种群之间通过特定的操作因子(如移民算子)进行联系,实现多种群的协同进化。最优解的获取是多个种群协同进化的综合结果。

2. 算法流程

多种群遗传算法的主要流程包括:

(1)初始化:设置种群数量、种群规模、交叉概率、变异概率等参数,并初始化各个种群。

(2)选择操作:根据个体的适应度值选择优秀个体进行遗传操作。

(3)交叉操作:对选择的个体进行交叉操作,以产生新的个体。

(4)变异操作:对新个体进行变异操作,以增加种群的多样性。

(5)移民操作:通过移民算子将各种群在进化过程中出现的最优个体定期地引入其他的种群中,实现种群之间的信息交换。

(6)判断收敛:根据迭代次数如果到了预设的迭代次数,则输出最优解;否则,返回步骤(2)继续进化。

3.MATLAB 代码

4. 程序结果

算法运行时间

runtime1 =

1.6544731

遗传算法优化得到的最优目标函数值

bestValue =

1.11702110252982

遗传算法优化得到的最优染色体

bestChrom =

1 至 6 列

8.82708520806725 7.91028217920581 6.84781965885676 6.35901822026773 4.86529713676558 3.49578240257491

7 至 9 列

3.6555307035593 2.45752155848663 1.12487043073628

>>

相关推荐
Swift社区2 小时前
Gunicorn 与 Uvicorn 部署 Python 后端详解
开发语言·python·gunicorn
码农阿豪2 小时前
Python Flask应用中文件处理与异常处理的实践指南
开发语言·python·flask
岁岁种桃花儿2 小时前
CentOS7 彻底卸载所有JDK/JRE + 重新安装JDK8(实操完整版,解决kafka/jps报错)
java·开发语言·kafka
csbysj20202 小时前
AngularJS 模块
开发语言
独好紫罗兰2 小时前
对python的再认识-基于数据结构进行-a003-列表-排序
开发语言·数据结构·python
wuhen_n2 小时前
JavaScript内置数据结构
开发语言·前端·javascript·数据结构
不会代码的小测试2 小时前
UI自动化-POM封装
开发语言·python·selenium·自动化
roman_日积跬步-终至千里2 小时前
【Java并发】Java 线程池实战:警惕使用CompletableFuture.supplyAsync
java·开发语言·网络
lsx2024063 小时前
C++ 基本的输入输出
开发语言
CodeSheep程序羊3 小时前
拼多多春节加班工资曝光,没几个敢给这个数的。
java·c语言·开发语言·c++·python·程序人生·职场和发展