MATLAB实现多种群遗传算法(multiple population GA,MPGA)

MATLAB实现多种群遗传算法(multiple population GA,MPGA)

1. 多种群遗传算法简介

多种群遗传算法(multiple population GA,MPGA)是在标准遗传算法(GA)的基础上经过改进并引入多种群的概念而形成的一种优化算法。多种群遗传算法突破了标准遗传算法仅靠单个群体进行遗传进化的框架,引入多个种群同时进行优化搜索。不同的种群被赋予不同的控制参数(如交叉概率、变异概率等),以实现不同的搜索目的。各个种群之间通过特定的操作因子(如移民算子)进行联系,实现多种群的协同进化。最优解的获取是多个种群协同进化的综合结果。

2. 算法流程

多种群遗传算法的主要流程包括:

(1)初始化:设置种群数量、种群规模、交叉概率、变异概率等参数,并初始化各个种群。

(2)选择操作:根据个体的适应度值选择优秀个体进行遗传操作。

(3)交叉操作:对选择的个体进行交叉操作,以产生新的个体。

(4)变异操作:对新个体进行变异操作,以增加种群的多样性。

(5)移民操作:通过移民算子将各种群在进化过程中出现的最优个体定期地引入其他的种群中,实现种群之间的信息交换。

(6)判断收敛:根据迭代次数如果到了预设的迭代次数,则输出最优解;否则,返回步骤(2)继续进化。

3.MATLAB 代码

4. 程序结果

算法运行时间

runtime1 =

1.6544731

遗传算法优化得到的最优目标函数值

bestValue =

1.11702110252982

遗传算法优化得到的最优染色体

bestChrom =

1 至 6 列

8.82708520806725 7.91028217920581 6.84781965885676 6.35901822026773 4.86529713676558 3.49578240257491

7 至 9 列

3.6555307035593 2.45752155848663 1.12487043073628

>>

相关推荐
Ljugg6 分钟前
把doi直接插入word中,然后直接生成参考文献
开发语言·c#·word
长流小哥6 分钟前
可视化开发:用Qt实现Excel级动态柱状图
开发语言·c++·qt·ui
Python测试之道15 分钟前
Deepseek API+Python 测试用例一键生成与导出 V1.0.6(加入分块策略,返回更完整可靠)
开发语言·python·测试用例
SRC_BLUE_1718 分钟前
Python GUI 编程 | QObject 控件基类详解 — 定时器
开发语言·数据库·python
啊阿狸不会拉杆25 分钟前
第二十一章:Python-Plotly库实现数据动态可视化
开发语言·python·plotly
滴答滴答嗒嗒滴36 分钟前
Python小练习系列 Vol.12:学生信息排序(sorted + key函数)
开发语言·python
愚润求学1 小时前
【C++】vector常用方法总结
开发语言·c++·vector
天天进步20151 小时前
Python项目-基于Flask的个人博客系统设计与实现(1)
开发语言·python·flask
安然无虞1 小时前
31天Python入门——第20天:魔法方法详解
开发语言·后端·爬虫·python
QQ__17646198241 小时前
Matlab安装tdms插件
开发语言·matlab·tdms插件