图像分割——区域增长

一 区域增长

图像灰度阈值分割技术都没有考虑到图像像素空间的连通性。区域增长法则正好相反,顾及像素的连接性.
方法:1)选择一个或一组种子;
2)选择特征及相似性判决准则;
3)从该种子开始向外生长,首先将判断种子邻域的像素是否
满足相似性条件,满足则与种子合并成区域,然后以合并的像
素为生长点,采用类似地方法进行生长
4)反复3)操作,直到不再有满足条件的像点合并到区域为止。


区域增长根据所用的邻域方式和相似性准则的不同,
产生各种不同的区域扩张法。可分为:
①单一型(像素与像素);
②质心型(像素与区域);
③混合型(区域与区域)

1 简单区域生长

下面给出以像素灰度为特征进行简单区域增长的步骤。
(1)对图像进行光栅扫描,求出不属于任何区域的像素。
当寻找不到这样的像素时结束操作。
(2)把这个像素灰度同其周围(4-邻域或8-邻域)不属于其
他区域的像素进行比较,若灰度差值小于阈值,则合并到
同一区域。并对合并的像素赋予标记。
(3)从新合并的像素开始,反复进行(2)的操作。
(4)反复进行(2)、(3)的操作,直至不能再合并。
(5)返回(1)操作,寻找新区域出发点的像素。

2 质心型区域生长

与简单区域增长不同,它是比较单个像素的特征与其相邻区域的特征,若相似则将像素归并到区域中。质心型链接操作步骤类似简单区域扩张法,唯一不同的是在上述(2)的操作中,改为比较已存在区域的像素灰度平均值与该区域邻接的像素灰度值。若差值小于阈值,则合并。其缺点是区域增长的结果与起始像素有关,起始位置不同则分割结果有差异。

3 混合型区域增长

混合型区域生长是把图像分割成小区域,比较相邻的小区域的相似性,相似则合并,直到不能合并为止。
下面介绍两种方法。
1.不依赖于起始点的方法
(1)设灰度差的阈值为0,用简单区域扩张法把具有相同灰度的像素合并到同一区域,得到图像的初始分割图像。
(2)从分割图像一个小区域开始,求出相邻区域间的灰度差,将差值最小的相邻区域合并;
(3)反复(2)的操作,把区域依次合并,适当阶段需停止合并,得到分割图像。这种方法若不在适当的阶段停止区域合并,整幅图像经区域扩张的最终结果就会为一个区域。

2.假设检验法
该方法是根据图像子块内的灰度分布的相似性进行子块合并,最终实现图
像的分割。
(1)把图像分割成互不交迭的、大小为
n×n的子块;
(2)比较相邻子块的灰度直方图相似性
,相似则合并成同一区域。相似性判断
标准,可选用下面其中之一:
(a)Kolmogorov-Smirnov检测标准:(b) Smoothed-Difference检测标准:
(3) 反复(2)的操作,直至区域不能合并为止。

相关推荐
m0_6344488917 分钟前
生成信息提取的大型语言模型综述
人工智能·语言模型·自然语言处理
积木链小链24 分钟前
智能制造:自动化焊装线的数字化设计
人工智能·智能制造·数字化转型·信息技术
运筹说26 分钟前
运筹说 第134期 | 矩阵对策的解法
人工智能·算法·矩阵·运筹学
点我头像干啥29 分钟前
卷积神经网络在图像分割中的应用:原理、方法与进展介绍
人工智能·神经网络·cnn
周末程序猿1 小时前
RAG实战|向量数据库LanceDB指南
人工智能
yychen_java1 小时前
无人机与AI技术结合的突破性应用场景
人工智能·无人机
启山智软1 小时前
启山智软实现b2c单商户商城对比传统单商户的优势在哪里?
人工智能
byxdaz1 小时前
PyTorch处理数据--Dataset和DataLoader
人工智能·深度学习·机器学习
gs801402 小时前
RAG生成中的多文档动态融合及去重加权策略探讨
人工智能·机器学习
字节跳动开源2 小时前
MySQL遇到AI:字节跳动开源 MySQL 虚拟索引 VIDEX
人工智能·mysql·开源·虚拟索引技术·解耦架构