C语言实例之9斐波那契数列实现

1. 斐波那契数列简介

斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多・斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为 "兔子数列"。

它的特点是从第三项开始,每一项都等于前两项之和,数列的前两项通常定义为 0 和 1(也有从 1 和 1 开始的定义方式,这里以 0 和 1 为例),即:

该数列的前几项依次为:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144......

斐波那契数列在自然界、计算机科学、数学等诸多领域都有广泛的应用,比如某生长模式、某算法优化等。

以下是不同方式输出斐波那契数列前20项的值

2. 实例代码之递归实现

需要注意的是,递归实现方式在计算较大项数时效率会很低,因为存在大量重复计算。

cpp 复制代码
#include <iostream>

// 递归函数计算斐波那契数列
int fibonacciRecursive(int n) {
    if (n == 0) {
        return 0;
    } else if (n == 1) {
        return 1;
    } else {
        return fibonacciRecursive(n - 1) + fibonacciRecursive(n - 2);
    }
}

int main() {
    std::cout << "斐波那契数列(递归实现)前20项的值为:" << std::endl;
    for (int i = 0; i < 20; ++i) {
        int result = fibonacciRecursive(i);
        std::cout << result << " ";
    }
    std::cout << std::endl;

    return 0;
}

3. 实例代码之for循环实现

该实现方式相对递归实现效率更高,尤其在计算较大项数时优势明显。

cpp 复制代码
#include <iostream>

// 迭代函数计算斐波那契数列
int fibonacciIterative(int n) {
    if (n == 0) {
        return 0;
    } else if (n == 1) {
        return 1;
    }

    int a = 0, b = 1, c;
    for (int i = 2; i <= n; ++i) {
        c = a + b;
        a = b;
        b = c;
    }

    return b;
}

int main() {
    std::cout << "斐波那契数列(迭代实现)前20项的值为:" << std::endl;
    for (int i = 0; i < 20; ++i) {
        int result = fibonacciIterative(i);
        std::cout << result << " ";
    }
    std::cout << std::endl;

    return 0;
}

4. 实例代码之数组实现

这种实现方式在需要多次访问数列不同项时可能会更方便,因为已经计算过的项都存储在数组中了。

cpp 复制代码
#include <iostream>

// 使用数组计算斐波那契数列
int fibonacciArray(int n) {
    if (n == 0) {
        return 0;
    } else if (n == 1) {
        return 1;
    }

    int fibArray[n + 1];
    fibArray[0] = 0;
    fibArray[1] = 1;

    for (int i = 2; i <= n; ++i) {
        fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
    }

    return fibArray[n];
}

int main() {
    std::cout << "斐波那契数列(数组存储实现)前20项的值为:" << std::endl;
    for (int i = 0; i < 20; ++i) {
        int result = fibonacciArray(i);
        std::cout << result << " ";
    }
    std::cout << std::endl;

    return 0;
}

5. 输出

相关推荐
3 分钟前
2.12矩阵问题,发牌,数字金字塔
线性代数·算法·矩阵
无聊的小坏坏10 分钟前
一文讲通:二分查找的边界处理
数据结构·c++·算法
m0_5287490010 分钟前
C语言错误处理宏两个比较重要的
java·linux·算法
禾叙_13 分钟前
【netty】Channel
开发语言·javascript·ecmascript
云深处@19 分钟前
【C++11】包装器,智能指针
开发语言·c++
量子炒饭大师26 分钟前
【C++入门】Cyber深度漫游者的初始链路——【类与对象】初始化成员列表
开发语言·c++·dubbo·类与对象·初始化成员列表
TracyCoder12330 分钟前
LeetCode Hot100(50/100)——153. 寻找旋转排序数组中的最小值
算法·leetcode·职场和发展
诸葛务农30 分钟前
点云配准在人形机器人中的应用:ICP算法(2)
人工智能·算法·机器学习·机器人
独自破碎E31 分钟前
BISHI43 讨厌鬼进货
android·java·开发语言
摘星编程36 分钟前
**解锁Agent智能体新纪元:自主协作、任务分解与人类意图对齐的终极指南**
算法