使用猴子补丁对pytorch的分布式接口进行插桩

训练脚本:

python 复制代码
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from torch import nn
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
import torch.nn.functional as F
import os
import distributed_patch

# 设置 NCCL 日志环境变量
'''
os.environ["NCCL_DEBUG"] = "INFO"
os.environ["NCCL_DEBUG_SUBSYS"] = "ALL"  # 或者 COLL
os.environ["NCCL_LOG_FILE"] = "nccl_log.txt"

# 运行 PyTorch 分布式代码
'''




class Net(nn.Module):  # 模型定义
    def __init__(self):
        super(Net, self).__init__()
        self.flatten = nn.Flatten()
        self.seq = nn.Sequential(
            nn.Linear(28 * 28, 128),
            nn.ReLU(),
            nn.Linear(128, 64),
            nn.ReLU(),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.flatten(x)
        return self.seq(x)


def main():
    dist.init_process_group(backend='nccl')  # 【集合通讯】其他进程连master,大家互认

    rank = dist.get_rank()
    world_size = dist.get_world_size()
    device_name = f'cuda:{rank}'

    checkpoint = None  # 各自加载checkpoint
    try:
        checkpoint = torch.load('checkpoint.pth', map_location='cpu')  # checkpoint是cuda:0保存的,加载默认会读到cuda:0,所以明确指定给cpu
    except:
        pass

    model = Net().to(device_name)
    if checkpoint and rank == 0:  # rank0恢复模型参数
        model.load_state_dict(checkpoint['model'])

    model = DDP(model)  # 【集合通讯】rank0广播参数给其他进程

    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)  # model参数一致,则optim会保证其初始状态一致
    if checkpoint:
        optimizer.load_state_dict(checkpoint['optimizer'])  # 各自加载checkpoint

    train_dataset = MNIST(root='./data', download=True, transform=ToTensor(), train=True)  # 各自加载dataset
    sampler = DistributedSampler(train_dataset)  # 指派子集给各进程
    train_dataloader = DataLoader(train_dataset, batch_size=32, sampler=sampler, persistent_workers=True, num_workers=2)

    val_dataset = MNIST(root='./data', download=True, transform=ToTensor(), train=False)
    val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=True, persistent_workers=True, num_workers=2)

    for epoch in range(20):
        sampler.set_epoch(epoch)  # 【集合通讯】生成随机种子,rank0广播给其他进程

        model.train()
        for x, y in train_dataloader:
            x, y = x.to(device_name), y.to(device_name)
            pred_y = model(x)  # 【集合通讯】rank0广播model buffer给其他进程
            loss = F.cross_entropy(pred_y, y)
            optimizer.zero_grad()
            loss.backward()  # 【集合通讯】每个参数的梯度做all reduce(每个进程会收到其他进程的梯度,并求平均)
            optimizer.step()

        dist.reduce(loss, dst=0)  # 【集合通讯】rank0汇总其他进程的loss

        if rank == 0:
            train_avg_loss = loss.item() / world_size

            # evaluate
            raw_model = model.module
            val_loss = 0
            with torch.no_grad():
                for x, y in val_dataloader:
                    x, y = x.to(device_name), y.to(device_name)
                    pred_y = raw_model(x)
                    loss = F.cross_entropy(pred_y, y)
                    val_loss += loss.item()
            val_avg_loss = val_loss / len(val_dataloader)
            print(f'train_loss:{train_avg_loss} val_loss:{val_avg_loss}')

            # checkpoint
            torch.save({'model': model.module.state_dict(), 'optimizer': optimizer.state_dict()}, '.checkpoint.pth')
            os.replace('.checkpoint.pth', 'checkpoint.pth')

        dist.barrier()  # 【集合通讯】等待rank0跑完eval



if __name__ == '__main__':
    main()

# torchrun --nproc_per_node 1 pytorch_dis_gpu.py

插桩脚本:

python 复制代码
import torch.distributed as dist

# 保存原始函数引用
original_functions = {
    "init_process_group": dist.init_process_group,
    "all_reduce": dist.all_reduce,
    "reduce": dist.reduce,
    "broadcast": dist.broadcast,
    "barrier": dist.barrier,
    "get_rank": dist.get_rank,
    "get_world_size": dist.get_world_size
}

# 插桩函数
def patched_init_process_group(*args, **kwargs):
    print("[distributed] init_process_group called")
    return original_functions["init_process_group"](*args, **kwargs)

def patched_all_reduce(tensor, op=dist.ReduceOp.SUM, group=None, async_op=False):
    print("[distributed] all_reduce called")
    return original_functions["all_reduce"](tensor, op, group, async_op)

def patched_reduce(tensor, dst, op=dist.ReduceOp.SUM, group=None, async_op=False):
    print("[distributed] reduce called")
    return original_functions["reduce"](tensor, dst, op, group, async_op)

def patched_broadcast(tensor, src, group=None, async_op=False):
    print("[distributed] broadcast called")
    return original_functions["broadcast"](tensor, src, group, async_op)

def patched_barrier(*args, **kwargs):
    print("[distributed] barrier called")
    return original_functions["barrier"](*args, **kwargs)

def patched_get_rank(*args, **kwargs):
    print("[distributed] get_rank called")
    return original_functions["get_rank"](*args, **kwargs)

def patched_get_world_size(*args, **kwargs):
    print("[distributed] get_world_size called")
    return original_functions["get_world_size"](*args, **kwargs)

# 替换分布式接口函数为插桩版本
dist.init_process_group = patched_init_process_group
dist.all_reduce = patched_all_reduce
dist.reduce = patched_reduce
dist.broadcast = patched_broadcast
dist.barrier = patched_barrier
dist.get_rank = patched_get_rank
dist.get_world_size = patched_get_world_size
相关推荐
DanCheng-studio8 小时前
网安毕业设计简单的方向答疑
python·毕业设计·毕设
轻抚酸~9 小时前
KNN(K近邻算法)-python实现
python·算法·近邻算法
lisw059 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
独行soc10 小时前
2025年渗透测试面试题总结-264(题目+回答)
网络·python·安全·web安全·网络安全·渗透测试·安全狮
2501_9416233211 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛11 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
汤姆yu11 小时前
基于python的外卖配送及数据分析系统
开发语言·python·外卖分析
AKAMAI11 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus11 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声11 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow