使用猴子补丁对pytorch的分布式接口进行插桩

训练脚本:

python 复制代码
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from torch import nn
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
import torch.nn.functional as F
import os
import distributed_patch

# 设置 NCCL 日志环境变量
'''
os.environ["NCCL_DEBUG"] = "INFO"
os.environ["NCCL_DEBUG_SUBSYS"] = "ALL"  # 或者 COLL
os.environ["NCCL_LOG_FILE"] = "nccl_log.txt"

# 运行 PyTorch 分布式代码
'''




class Net(nn.Module):  # 模型定义
    def __init__(self):
        super(Net, self).__init__()
        self.flatten = nn.Flatten()
        self.seq = nn.Sequential(
            nn.Linear(28 * 28, 128),
            nn.ReLU(),
            nn.Linear(128, 64),
            nn.ReLU(),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.flatten(x)
        return self.seq(x)


def main():
    dist.init_process_group(backend='nccl')  # 【集合通讯】其他进程连master,大家互认

    rank = dist.get_rank()
    world_size = dist.get_world_size()
    device_name = f'cuda:{rank}'

    checkpoint = None  # 各自加载checkpoint
    try:
        checkpoint = torch.load('checkpoint.pth', map_location='cpu')  # checkpoint是cuda:0保存的,加载默认会读到cuda:0,所以明确指定给cpu
    except:
        pass

    model = Net().to(device_name)
    if checkpoint and rank == 0:  # rank0恢复模型参数
        model.load_state_dict(checkpoint['model'])

    model = DDP(model)  # 【集合通讯】rank0广播参数给其他进程

    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)  # model参数一致,则optim会保证其初始状态一致
    if checkpoint:
        optimizer.load_state_dict(checkpoint['optimizer'])  # 各自加载checkpoint

    train_dataset = MNIST(root='./data', download=True, transform=ToTensor(), train=True)  # 各自加载dataset
    sampler = DistributedSampler(train_dataset)  # 指派子集给各进程
    train_dataloader = DataLoader(train_dataset, batch_size=32, sampler=sampler, persistent_workers=True, num_workers=2)

    val_dataset = MNIST(root='./data', download=True, transform=ToTensor(), train=False)
    val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=True, persistent_workers=True, num_workers=2)

    for epoch in range(20):
        sampler.set_epoch(epoch)  # 【集合通讯】生成随机种子,rank0广播给其他进程

        model.train()
        for x, y in train_dataloader:
            x, y = x.to(device_name), y.to(device_name)
            pred_y = model(x)  # 【集合通讯】rank0广播model buffer给其他进程
            loss = F.cross_entropy(pred_y, y)
            optimizer.zero_grad()
            loss.backward()  # 【集合通讯】每个参数的梯度做all reduce(每个进程会收到其他进程的梯度,并求平均)
            optimizer.step()

        dist.reduce(loss, dst=0)  # 【集合通讯】rank0汇总其他进程的loss

        if rank == 0:
            train_avg_loss = loss.item() / world_size

            # evaluate
            raw_model = model.module
            val_loss = 0
            with torch.no_grad():
                for x, y in val_dataloader:
                    x, y = x.to(device_name), y.to(device_name)
                    pred_y = raw_model(x)
                    loss = F.cross_entropy(pred_y, y)
                    val_loss += loss.item()
            val_avg_loss = val_loss / len(val_dataloader)
            print(f'train_loss:{train_avg_loss} val_loss:{val_avg_loss}')

            # checkpoint
            torch.save({'model': model.module.state_dict(), 'optimizer': optimizer.state_dict()}, '.checkpoint.pth')
            os.replace('.checkpoint.pth', 'checkpoint.pth')

        dist.barrier()  # 【集合通讯】等待rank0跑完eval



if __name__ == '__main__':
    main()

# torchrun --nproc_per_node 1 pytorch_dis_gpu.py

插桩脚本:

python 复制代码
import torch.distributed as dist

# 保存原始函数引用
original_functions = {
    "init_process_group": dist.init_process_group,
    "all_reduce": dist.all_reduce,
    "reduce": dist.reduce,
    "broadcast": dist.broadcast,
    "barrier": dist.barrier,
    "get_rank": dist.get_rank,
    "get_world_size": dist.get_world_size
}

# 插桩函数
def patched_init_process_group(*args, **kwargs):
    print("[distributed] init_process_group called")
    return original_functions["init_process_group"](*args, **kwargs)

def patched_all_reduce(tensor, op=dist.ReduceOp.SUM, group=None, async_op=False):
    print("[distributed] all_reduce called")
    return original_functions["all_reduce"](tensor, op, group, async_op)

def patched_reduce(tensor, dst, op=dist.ReduceOp.SUM, group=None, async_op=False):
    print("[distributed] reduce called")
    return original_functions["reduce"](tensor, dst, op, group, async_op)

def patched_broadcast(tensor, src, group=None, async_op=False):
    print("[distributed] broadcast called")
    return original_functions["broadcast"](tensor, src, group, async_op)

def patched_barrier(*args, **kwargs):
    print("[distributed] barrier called")
    return original_functions["barrier"](*args, **kwargs)

def patched_get_rank(*args, **kwargs):
    print("[distributed] get_rank called")
    return original_functions["get_rank"](*args, **kwargs)

def patched_get_world_size(*args, **kwargs):
    print("[distributed] get_world_size called")
    return original_functions["get_world_size"](*args, **kwargs)

# 替换分布式接口函数为插桩版本
dist.init_process_group = patched_init_process_group
dist.all_reduce = patched_all_reduce
dist.reduce = patched_reduce
dist.broadcast = patched_broadcast
dist.barrier = patched_barrier
dist.get_rank = patched_get_rank
dist.get_world_size = patched_get_world_size
相关推荐
Destiny_where1 小时前
Agent平台-RAGFlow(2)-源码安装
python·ai
美狐美颜SDK开放平台1 小时前
美颜SDK性能优化实战:GPU加速与AI人脸美型的融合开发
人工智能·音视频
molunnnn2 小时前
第四章 Agent的几种经典范式
开发语言·python
AI浩2 小时前
VSSD:具有非因果状态空间对偶性的视觉Mamba模型
人工智能·目标检测·计算机视觉
lqqjuly3 小时前
Lidar调试记录Ⅳ之Ubuntu22.04+ROS2+Livox_SDK2环境下编译Livox ROS Driver 2
人工智能·机器人·自动驾驶
qq_436962183 小时前
数据中台:打破企业数据孤岛,实现全域资产化的关键一步
数据库·人工智能·信息可视化·数据挖掘·数据分析
linuxxx1103 小时前
django测试缓存命令的解读
python·缓存·django
宇若-凉凉3 小时前
BERT 完整教程指南
人工智能·深度学习·bert
JD技术委员会4 小时前
如何在跨部门沟通失误后进行协调与澄清
人工智能
PcVue China4 小时前
PcVue X 工控——工厂数字化转型与落地巡回研讨会圆满举行
人工智能·软件工程·scada·监控平台·工控网