论深度学习训练过程中数据集打乱的重要性

浅浅记录一下今天遇到的一个很有意思的问题:

今天在重新训练一个之前跑过的模型时候,突然发现训练损失一直居高不下,一直保持在0.6左右,就感觉很奇怪,为什么之前训练的时候没有问题,之前训练的时候loss是正常下降的,为什么今天重新把代码拉出来跑的时候,就出现loss不下降的问题呢?带着这个问题,我就狠狠调试,发现代码逻辑啥的都没有问题,为此调试了一整天,然后刚刚坐在实验室的时候,突然想着要不把中间结果输出看看,然后我就单独挑了几例数据训练一下,结果一看,发现我的每一个epoch加载的数据顺序是一样的,也就是说,我的DataLoader中的shuffle这个参数是False,按理来说,shuffle设置为False,也就是数据集的加载顺序不变,这应该不会影响模型的训练,确实,对于自然图像来说,由于训练集中的每张图像都是独立,所以即使数据集的加载顺序不变,也不影响模型的训练,但是,由于我研究的领域是医学图像,主要是脑肿瘤的MRI图像,一般MRI图像都是3D数据,我会把这个3D数据中沿着轴向面提取slice,这样一来,数据集之间是有内在关联的,即前后两张图片是极为相似的,所以如果此时再将shuffle设置为False的话,就会严重影响模型的训练,在我将shuffle改为True后,我的模型有可以正常训练了!

目前以上说法只是我对于这个问题的一个猜想,不确定是否正确,但是实验观察的现象确实是将shuffle改为True以后,模型就可以正常训练了。

相关推荐
Liue612312311 小时前
基于YOLOv26的口罩佩戴检测与识别系统实现与优化
人工智能·yolo·目标跟踪
小二·2 小时前
Python Web 开发进阶实战 :AI 原生数字孪生 —— 在 Flask + Three.js 中构建物理世界实时仿真与优化平台
前端·人工智能·python
chinesegf3 小时前
文本嵌入模型的比较(一)
人工智能·算法·机器学习
哥布林学者3 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入 课后习题与代码实践
深度学习·ai
珠海西格电力3 小时前
零碳园区的能源结构优化需要哪些技术支持?
大数据·人工智能·物联网·架构·能源
Black蜡笔小新3 小时前
视频汇聚平台EasyCVR打造校园消防智能监管新防线
网络·人工智能·音视频
珠海西格电力科技3 小时前
双碳目标下,微电网为何成为能源转型核心载体?
网络·人工智能·物联网·云计算·智慧城市·能源
2501_941837263 小时前
【计算机视觉】基于YOLOv26的交通事故检测与交通状况分析系统详解_1
人工智能·yolo·计算机视觉
HyperAI超神经3 小时前
加州大学构建基于全连接神经网络的片上光谱仪,在芯片级尺寸上实现8纳米的光谱分辨率
人工智能·深度学习·神经网络·机器学习·ai编程
badfl3 小时前
AI漫剧技术方案拆解:NanoBanana+Sora视频生成全流程
人工智能·ai·ai作画