论深度学习训练过程中数据集打乱的重要性

浅浅记录一下今天遇到的一个很有意思的问题:

今天在重新训练一个之前跑过的模型时候,突然发现训练损失一直居高不下,一直保持在0.6左右,就感觉很奇怪,为什么之前训练的时候没有问题,之前训练的时候loss是正常下降的,为什么今天重新把代码拉出来跑的时候,就出现loss不下降的问题呢?带着这个问题,我就狠狠调试,发现代码逻辑啥的都没有问题,为此调试了一整天,然后刚刚坐在实验室的时候,突然想着要不把中间结果输出看看,然后我就单独挑了几例数据训练一下,结果一看,发现我的每一个epoch加载的数据顺序是一样的,也就是说,我的DataLoader中的shuffle这个参数是False,按理来说,shuffle设置为False,也就是数据集的加载顺序不变,这应该不会影响模型的训练,确实,对于自然图像来说,由于训练集中的每张图像都是独立,所以即使数据集的加载顺序不变,也不影响模型的训练,但是,由于我研究的领域是医学图像,主要是脑肿瘤的MRI图像,一般MRI图像都是3D数据,我会把这个3D数据中沿着轴向面提取slice,这样一来,数据集之间是有内在关联的,即前后两张图片是极为相似的,所以如果此时再将shuffle设置为False的话,就会严重影响模型的训练,在我将shuffle改为True后,我的模型有可以正常训练了!

目前以上说法只是我对于这个问题的一个猜想,不确定是否正确,但是实验观察的现象确实是将shuffle改为True以后,模型就可以正常训练了。

相关推荐
CNRio1 小时前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll2 小时前
深度学习——CNN入门
人工智能·深度学习·cnn
青瓷程序设计5 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
F_D_Z5 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
金智维科技官方6 小时前
RPA财务机器人为企业高质量发展注入动能
人工智能·机器人·rpa·财务
沫儿笙6 小时前
安川机器人tag焊接怎么节省保护气
人工智能·物联网·机器人
2501_941147426 小时前
人工智能赋能智慧教育互联网应用:智能学习与教育管理优化实践探索》
人工智能
阿龙AI日记7 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
爱写代码的小朋友7 小时前
“数字镜像”与认知负能者:生成式AI个性化学习支持者的协同构建与伦理规制研究
人工智能
找方案7 小时前
新型智慧城市城市大数据应用解决方案
人工智能·智慧城市