论深度学习训练过程中数据集打乱的重要性

浅浅记录一下今天遇到的一个很有意思的问题:

今天在重新训练一个之前跑过的模型时候,突然发现训练损失一直居高不下,一直保持在0.6左右,就感觉很奇怪,为什么之前训练的时候没有问题,之前训练的时候loss是正常下降的,为什么今天重新把代码拉出来跑的时候,就出现loss不下降的问题呢?带着这个问题,我就狠狠调试,发现代码逻辑啥的都没有问题,为此调试了一整天,然后刚刚坐在实验室的时候,突然想着要不把中间结果输出看看,然后我就单独挑了几例数据训练一下,结果一看,发现我的每一个epoch加载的数据顺序是一样的,也就是说,我的DataLoader中的shuffle这个参数是False,按理来说,shuffle设置为False,也就是数据集的加载顺序不变,这应该不会影响模型的训练,确实,对于自然图像来说,由于训练集中的每张图像都是独立,所以即使数据集的加载顺序不变,也不影响模型的训练,但是,由于我研究的领域是医学图像,主要是脑肿瘤的MRI图像,一般MRI图像都是3D数据,我会把这个3D数据中沿着轴向面提取slice,这样一来,数据集之间是有内在关联的,即前后两张图片是极为相似的,所以如果此时再将shuffle设置为False的话,就会严重影响模型的训练,在我将shuffle改为True后,我的模型有可以正常训练了!

目前以上说法只是我对于这个问题的一个猜想,不确定是否正确,但是实验观察的现象确实是将shuffle改为True以后,模型就可以正常训练了。

相关推荐
SUPER526613 小时前
本地开发环境_spring-ai项目启动异常
java·人工智能·spring
上进小菜猪18 小时前
基于 YOLOv8 的智能车牌定位检测系统设计与实现—从模型训练到 PyQt 可视化落地的完整实战方案
人工智能
AI浩18 小时前
UNIV:红外与可见光模态的统一基础模型
人工智能·深度学习
GitCode官方18 小时前
SGLang AI 金融 π 对(杭州站)回顾:大模型推理的工程实践全景
人工智能·金融·sglang
木头左19 小时前
LSTM模型入参有效性验证基于量化交易策略回测的方法学实践
人工智能·rnn·lstm
找方案19 小时前
我的 all-in-rag 学习笔记:文本分块 ——RAG 系统的 “信息切菜术“
人工智能·笔记·all-in-rag
亚马逊云开发者19 小时前
让 AI 工作空间更智能:Amazon Quick Suite 集成博查搜索实践
人工智能
腾讯WeTest19 小时前
「低成本、高质高效」WeTest AI翻译限时免费
人工智能
Lucas5555555519 小时前
现代C++四十不惑:AI时代系统软件的基石与新征程
开发语言·c++·人工智能
言之。19 小时前
Claude Code 专业教学文档
人工智能