论深度学习训练过程中数据集打乱的重要性

浅浅记录一下今天遇到的一个很有意思的问题:

今天在重新训练一个之前跑过的模型时候,突然发现训练损失一直居高不下,一直保持在0.6左右,就感觉很奇怪,为什么之前训练的时候没有问题,之前训练的时候loss是正常下降的,为什么今天重新把代码拉出来跑的时候,就出现loss不下降的问题呢?带着这个问题,我就狠狠调试,发现代码逻辑啥的都没有问题,为此调试了一整天,然后刚刚坐在实验室的时候,突然想着要不把中间结果输出看看,然后我就单独挑了几例数据训练一下,结果一看,发现我的每一个epoch加载的数据顺序是一样的,也就是说,我的DataLoader中的shuffle这个参数是False,按理来说,shuffle设置为False,也就是数据集的加载顺序不变,这应该不会影响模型的训练,确实,对于自然图像来说,由于训练集中的每张图像都是独立,所以即使数据集的加载顺序不变,也不影响模型的训练,但是,由于我研究的领域是医学图像,主要是脑肿瘤的MRI图像,一般MRI图像都是3D数据,我会把这个3D数据中沿着轴向面提取slice,这样一来,数据集之间是有内在关联的,即前后两张图片是极为相似的,所以如果此时再将shuffle设置为False的话,就会严重影响模型的训练,在我将shuffle改为True后,我的模型有可以正常训练了!

目前以上说法只是我对于这个问题的一个猜想,不确定是否正确,但是实验观察的现象确实是将shuffle改为True以后,模型就可以正常训练了。

相关推荐
大厂技术总监下海1 分钟前
你的个人AI工作站已就绪:Ollama开源框架,支持多模态、可定制、一键部署
人工智能·机器学习·开源
行业探路者5 分钟前
如何利用二维码提升产品画册的制作与传播?
大数据·人工智能·安全·二维码·设备巡检
安达发公司8 分钟前
安达发|给“工业心脏”装上新大脑:APS生产排产的硬核智慧
大数据·人工智能·aps高级排程·aps排程软件·生产计划排单软件·aps生产排产
chatexcel12 分钟前
ChatExcel一年完成3轮融资,构建全模态数据链路平台,定义 AI for Data
人工智能
悦数图数据库16 分钟前
“复旦大学—杭州悦数先进金融图技术校企联合研究中心年度总结会”圆满举行
大数据·数据库·人工智能
星浩AI18 分钟前
LCEL:打造可观测、可扩展、可部署的 LangChain 应用
人工智能·后端·python
agicall.com19 分钟前
信创电话助手自动录音功能说明
人工智能·语音识别·自动录音·座机录音·固话录音
初次攀爬者21 分钟前
RAG核心升级|多LLM模型动态切换方案
人工智能·后端·ai编程
bst@微胖子23 分钟前
HuggingFace项目实战之分类任务实战
pytorch·深度学习·分类