本章使用Pytorch的API实现RNN上的语言模型训练
0 导入库
python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from collections import Counter
import re
import math
from tqdm import tqdm
1 准备数据
需要对文本进行预处理,比如转换为小写、去除标点符号等,以减少词汇量并简化问题,然后构建词汇表,即创建一个字符到索引的映射和一个索引到字符的映射,最后将将文本转换为整数序列,这些整数代表词汇表中的位置。
python
# 1. 加载数据
def load_data(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
text = ''.join([line.strip().lower() for line in lines])
# 使用正则表达式去除标点符号和数字
text = re.sub(r'[^\w\s]', '', text) # 去除标点符号
text = re.sub(r'\d+', '', text) # 去除数字
return text
# 2. 文本预处理
def preprocess_text(text):
tokens = list(text) # 将文本切分为字符
vocab = sorted(set(tokens)) # 构建词表
token_to_idx = {token: idx for idx, token in enumerate(vocab)} # 词元到索引的映射
idx_to_token = {idx: token for token, idx in token_to_idx.items()} # 索引到词元的映射
token_indices = [token_to_idx[token] for token in tokens] # 把文本转化为索引列表
return token_indices, token_to_idx, idx_to_token, vocab
2 创建数据集
从文本中提取固定长度的子序列 作为输入,并将紧随其后的字符作为目标输出,最后将这些序列转换为适合输入到RNN模型的张量格式
python
# 数据集类
class TextDataset(Dataset):
def __init__(self, token_indices, seq_len):
self.data = token_indices
self.seq_len = seq_len
def __len__(self):
return len(self.data) - self.seq_len
def __getitem__(self, idx):
# 输入数据是从当前位置到指定序列长度的位置的数据,即一个序列
x = self.data[idx:idx + self.seq_len]
# 目标数据是输入数据的下一个位置的数据,即单个字符
y = self.data[idx + 1:idx + self.seq_len + 1]
return torch.tensor(x, dtype=torch.long), torch.tensor(y, dtype=torch.long)# 转化为Tensor
3 构建RNN模型
使用Pytorch构建RNN模型
python
class SimpleRNN(nn.Module):
def __init__(self, vocab_size, hidden_size):
super(SimpleRNN, self).__init__()
self.hidden_size = hidden_size # 隐藏层形状
self.rnn = nn.RNN(vocab_size, hidden_size, batch_first=True)
'''
vocab_size:特征的数量,即词汇表的大小
hidden_size:隐藏层的状态向量的维度
batch_first:决定了输入和输出张量的形状
如果batch_first=True,
输入和输出张量的形状将是(batch_size,sequence_length, input_size)。
如果batch_first=False,
输入和输出张量的形状将是 (sequence_length, batch_size, input_size)。
'''
self.fc = nn.Linear(hidden_size, vocab_size)
def forward(self, x, hidden=None):
out, hidden = self.rnn(x, hidden) # RNN层
out = self.fc(out) # 全连接层
return out, hidden
4 训练模型
在训练前,需要把数据转化为one-hot编码,以增强特征属性,添加困惑度作为评价指标,使用早停法提前结束训练,避免过拟合
python
# 4. 训练模型
def train_model(model, dataloader, val_dataloader, criterion, vocab_size, optimizer, device, num_epochs=100, patience=5, min_delta=0.001):
assert vocab_size is not None, "vocab_size must be provided"
model.to(device) # 将模型移动到指定设备
model.train() # 设置模型为训练模式
best_val_loss = float('inf')
epochs_no_improve = 0
for epoch in range(num_epochs):
total_loss = 0
# 训练阶段
with tqdm(dataloader, desc=f'Epoch {epoch+1}/{num_epochs} (Training)', unit='batch') as tepoch:
for inputs, targets in tepoch:
# 将数据移动到指定设备
inputs, targets = inputs.to(device), targets.to(device)
# 将输入数据转换为 one-hot 编码
inputs_one_hot = F.one_hot(inputs, num_classes=vocab_size).float()
# 清零梯度
optimizer.zero_grad()
# 前向传播
outputs, _ = model(inputs_one_hot)
# 计算损失
loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))
# 反向传播和优化
loss.backward()
optimizer.step()
total_loss += loss.item()
tepoch.set_postfix(loss=loss.item())
average_loss = total_loss / len(dataloader)
perplexity = math.exp(average_loss) # 计算困惑度
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {average_loss:.4f}, Perplexity: {perplexity:.4f}')
# 验证阶段
model.eval()
val_loss = 0
with torch.no_grad():
with tqdm(val_dataloader, desc=f'Epoch {epoch+1}/{num_epochs} (Validation)', unit='batch') as tepoch:
for inputs, targets in tepoch:
inputs, targets = inputs.to(device), targets.to(device)
inputs_one_hot = F.one_hot(inputs, num_classes=vocab_size).float()
outputs, _ = model(inputs_one_hot)
loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))
val_loss += loss.item()
tepoch.set_postfix(loss=loss.item())
average_val_loss = val_loss / len(val_dataloader)
print(f'Validation Loss: {average_val_loss:.4f}')
# 检查是否需要早停
if average_val_loss < best_val_loss - min_delta:
best_val_loss = average_val_loss
epochs_no_improve = 0
else:
epochs_no_improve += 1
if epochs_no_improve >= patience:
print(f'Early stopping at epoch {epoch+1}')
break
model.train() # 回到训练模式
5 预测模型
我们的输入必须大于seq_len
,不然就不符合输入格式(可以使用补全,这里不展开),对于单词或者句子,需要把他们分割为字符,然后转换为token序列,作为输入
python
def predict(model, token_to_idx, idx_to_token, start_text, length, device, unk_token='<UNK>'):
model.to(device)
model.eval()
# 将起始文本转换为字符 token 序列
input_tokens = []
for char in start_text:
if char in token_to_idx:
input_tokens.append(token_to_idx[char])
else:
if unk_token in token_to_idx:
input_tokens.append(token_to_idx[unk_token]) # 使用 <UNK> 表示未知字符
else:
raise ValueError(f"Character '{char}' not in vocabulary and no '<UNK>' token provided.")
# 转换为 PyTorch Tensor
input_tensor = torch.tensor(input_tokens, dtype=torch.long).unsqueeze(0).to(device)
generated_tokens = []
with torch.no_grad():
hidden = None
for i in range(length):
# 将输入数据转换为 one-hot 编码
inputs_one_hot = F.one_hot(input_tensor, num_classes=len(token_to_idx)).float()
# 前向传播
outputs, hidden = model(inputs_one_hot, hidden)
# 获取最后一个时间步的输出
output = outputs[0, -1, :]
# 获取最大概率的 token
_, top_index = output.topk(1)
predicted_token = idx_to_token[top_index.item()]
# 添加预测的 token 到生成的序列中
generated_tokens.append(predicted_token)
# 更新输入 tensor
input_tensor = torch.tensor([[top_index.item()]], dtype=torch.long).to(device)
# 将生成的字符序列拼接成字符串
generated_text = ''.join(generated_tokens)
return start_text + generated_text
6 主函数
python
# 读取数据
file_path = '/home/caser/code/data/timemachine.txt'
text = load_data(file_path)
# 预处理数据
token_indices, token_to_idx, idx_to_token, vocab=preprocess_text(text)
# 参数设置
seq_len = 5
batch_size = 64
hidden_size = 128
learning_rate = 0.01
num_epochs = 100
patience = 5 # 早停法的耐心值
min_delta = 0.001 # 早停法的最小改进阈值
# 创建数据集和数据加载器
dataset = TextDataset(token_indices, seq_len)
train_size = int(0.9 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
# 初始化模型和优化器
vocab_size = len(vocab)
model = SimpleRNN(vocab_size, hidden_size)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 选择设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 训练模型
train_model(model, train_dataloader, val_dataloader, criterion, vocab_size, optimizer, device, num_epochs, patience, min_delta)
# 进行预测
start_text = 'the time traveller '
predicted_text = predict(model, token_to_idx, idx_to_token, start_text, length=50, device=device)
print(predicted_text)
运行结果: