集成量子光子学(IQP)

  • IQP 正在成为量子计算的可行替代方案
  • 量子源、波导和调制器等领域的研究使这成为可能
  • 与 CMOS 技术的兼容意味着工业可扩展性将更加容易

量子光子学的基本组成部分

IQP 系统的基本组成部分包括:

  • 来源(例如腔体中的 QD)

  • 波导

  • 定向耦合器(分束器)

  • 调节器

探测器

Lumerical 量子光子学

这里我们展示了如何使用各种Lumerical模块来设计 IQP 组件。我们重点关注:

  • 光子晶体(PC)设计:
    • 嵌入 PC 的 QD 是单光子的常用来源
    • Q 因子计算
  • 波导设计包括损耗分析
    • 计算弯曲损耗
  • 调制器分析
    • 使用 CHARGE 计算电荷分布
    • 使用 MODE 计算不同电荷分布的折射率变化
  • 波导中频率转换的分析
    • 分析波导中的频率转换
    • 分析温度引起的色散
    • 计算不同温度下的转换效率

使用 Lumerical 的光子晶体 (PC) 设计

  • 嵌入 PC 腔中的量子点是最受欢迎的单光子源之一
  • Lumerical FDTD 可用于计算此类腔体的 Q 因子
  • 可以通过分析时间信号来计算 Q 值,尤其是对于高 Q 值腔体

采用 Lumerical 的环形谐振腔设计

  • 另一种流行的架构是环形谐振腔架构
  • Lumerical FDTD 可用于利用时间信号衰减计算此类腔体的 Q 因子
  • 可以在输入端口启动波导模式,并且可以在引出端口和通过端口测量传输。通过改变环的半径,可以改变谐振频率

波导设计和损耗分析

MODE 可用于:

  • 利用n_eff和 loss等信息计算波导的各种模式
  • 执行频率扫描来计算不同波长下特定模式的有效指数
  • 通过计算具有一定半径的弯曲的模式有效指数和损耗/厘米来计算弯曲损耗。这里我们看到的是弯曲半径为 1.5 微米的损耗。
  • 计算波导弯曲部分和直部分之间的模式重叠。弯曲损耗计算时必须考虑到这一点。在这里,我们看到直波导模式和弯曲半径为 10um 的模式的重叠积分为 0.9957。

调制器

  • 在这里我们演示如何使用Lumerical CHARGE建模 PN 调制器
    • CHARGE 可用于计算施加不同电场值的电荷密度
    • 电荷密度的变化会改变波导的折射率,从而导致传播模式发生相位变化
  • 在这里我们演示如何使用Lumerical CHARGE建模 PN 调制器
    • CHARGE 可用于计算不同电压下的电容
    • 该电容提供了有关调制器使用速度的信息
  • CHARGE 可以导出获得的电荷分布,MODE 解决方案可以使用它来计算不同电压下的基本模式特性

测量调制过程中的相位变化

INTERCONNECT 可用于测量使用设计的调制器的相位变化。MODE 解决方案可用于导出不同电压的有效折射率。这可以导入 INTERCONNECT 以计算不同电压的调制。

Lumerical用于频率转换

许多 IQP 协议使用频率转换来生成光子。例如,在铌酸锂中,Lumerical (MODE) 可用于计算基波和 SHG (二次谐波) 模式如何随温度变化。

使用Sellmeier系数模拟不同温度下铌酸锂的折射率,我们可以获得不同温度下基波 ( tel ) 和 SHG ( nir )的模式色散

利用色散数据,我们可以找到不同温度下与基波波长相匹配的相位。我们发现,随着温度升高,基波波长会向更高的值偏移。

相关推荐
在人间负债^1 小时前
量子蚁群算法复现
人工智能·python·深度学习·算法·大模型·量子计算·蚁群算法
微凉_z2 天前
LWE详细介绍
密码学·量子计算·格密码·lwe问题
Chahot2 天前
量子安全与经典密码学:一些现实方面的讨论
安全·密码学·量子计算
风间琉璃""3 天前
对传统加密算法降维打击?!——量子计算
网络安全·安全威胁分析·量子计算·加密算法·传统算法
白光白光3 天前
论文阅读--Evidence for the utility of quantum computing before fault tolerance
量子计算
青云交3 天前
大数据新视界 -- Impala 性能优化:量子计算启发下的数据加密与性能平衡(下)(30 / 30)
大数据·hive·量子计算·数据加密·impala·量子密钥分发·性能平衡
huaqianzkh5 天前
了解量子技术:一场科技革命的前夜
量子计算
?crying14 天前
安全见闻 -- 量子计算
安全·量子计算
白光白光21 天前
贝尔不等式的验证
量子计算·贝尔不等式·贝尔不等式违反