【NLP高频面题 - LLM架构篇】大模型为何使用RMSNorm代替LayerNorm?

【NLP高频面题 - LLM架构篇】大模型为何使用RMSNorm代替LayerNorm?

重要性:★★★ 💯


NLP Github 项目:


大模型使用RMSNorm代替LayerNorm是为了降低计算量。

均方根归一化 (Root Mean Square Layer Normalization,RMS Norm)论文中提出,层归一化(Layer Normalization)之所以有效,关键在于其实现的缩放不变性(Scale Invariance),而非平移不变性(Translation Invariance)。

基于此,RMSNorm在设计时简化了传统层归一化的方法。它移除了层归一化中的平移操作(即去掉了均值的计算和减除步骤),只保留了缩放操作。

因此 RMSNorm 主要是在 LayerNorm 的基础上去掉了减均值这一项,其计算效率更高且没有降低性能。

RMS Norm针对输入向量 x,RMSNorm 函数计算公式如下:

层归一化(LayerNorm)的计算公式:

经过对比,可以清楚的看到,RMSNorm 主要是在 LayerNorm 的基础上去掉了减均值这一项,计算量明显降低。

RMSNorm 层归一化的代码实现:


NLP 大模型高频面题汇总

NLP基础篇
【NLP 面试宝典 之 模型分类】 必须要会的高频面题
【NLP 面试宝典 之 神经网络】 必须要会的高频面题
【NLP 面试宝典 之 主动学习】 必须要会的高频面题
【NLP 面试宝典 之 超参数优化】 必须要会的高频面题
【NLP 面试宝典 之 正则化】 必须要会的高频面题
【NLP 面试宝典 之 过拟合】 必须要会的高频面题
【NLP 面试宝典 之 Dropout】 必须要会的高频面题
【NLP 面试宝典 之 EarlyStopping】 必须要会的高频面题
【NLP 面试宝典 之 标签平滑】 必须要会的高频面题
【NLP 面试宝典 之 Warm up 】 必须要会的高频面题
【NLP 面试宝典 之 置信学习】 必须要会的高频面题
【NLP 面试宝典 之 伪标签】 必须要会的高频面题
【NLP 面试宝典 之 类别不均衡问题】 必须要会的高频面题
【NLP 面试宝典 之 交叉验证】 必须要会的高频面题
【NLP 面试宝典 之 词嵌入】 必须要会的高频面题
【NLP 面试宝典 之 One-Hot】 必须要会的高频面题
...
BERT 模型面
【NLP 面试宝典 之 BERT模型】 必须要会的高频面题
【NLP 面试宝典 之 BERT变体】 必须要会的高频面题
【NLP 面试宝典 之 BERT应用】 必须要会的高频面题
...
LLMs 微调面
【NLP 面试宝典 之 LoRA微调】 必须要会的高频面题
【NLP 面试宝典 之 Prompt】 必须要会的高频面题
【NLP 面试宝典 之 提示学习微调】 必须要会的高频面题
【NLP 面试宝典 之 PEFT微调】 必须要会的高频面题
【NLP 面试宝典 之 Chain-of-Thought微调】 必须要会的高频面题
...
相关推荐
产业家2 分钟前
Sora 后思考:从 AI 工具到 AI 平台,产业 AGI 又近了一步
人工智能·chatgpt·agi
量化交易曾小健(金融号)6 分钟前
人大计算金融课程名称:《机器学习》(题库)/《大数据与机器学习》(非题库) 姜昊教授
人工智能
IT_陈寒13 分钟前
Redis 性能翻倍的 5 个隐藏技巧,99% 的开发者都不知道第3点!
前端·人工智能·后端
W_chuanqi16 分钟前
RDEx:一种效果驱动的混合单目标优化器,自适应选择与融合多种算子与策略
人工智能·算法·机器学习·性能优化
好奇龙猫17 分钟前
[AI学习:SPIN -win-安装SPIN-工具过程 SPIN win 电脑安装=accoda 环境-第四篇:代码修复]
人工智能·学习
Pocker_Spades_A26 分钟前
AI搜索自由:Perplexica+cpolar构建你的私人知识引擎
人工智能
~kiss~27 分钟前
图像的脉冲噪声和中值滤波
图像处理·人工智能·计算机视觉
居7然30 分钟前
DeepSeek-7B-chat 4bits量化 QLora 微调
人工智能·分布式·架构·大模型·transformer
卡奥斯开源社区官方32 分钟前
OpenAI万亿美元计划技术拆解:AI智能体的架构演进与商业化实践
人工智能
熊猫钓鱼>_>36 分钟前
AI驱动的专业报告撰写:从信息整合到洞察生成的全新范式
大数据·人工智能·百度