3.22【机器学习】决策树作业&代码实现

4.1由于决策树只在样本同属于一类或者所有特征值都用完或缺失时生成叶节点,同一节点的样本,在路径上的特征值都相同,而训练集中又没有冲突数据,所以必定存在训练误差为0的决策树

4.2使用最小训练误差会导致过拟合,使得学习模型泛化能力下降。

4.3

青绿0,乌黑1,浅白2

蜷缩0,稍蜷1,硬挺2

浊响0,沉闷1,清脆2

清晰0,烧糊1,模胡2

凹陷0,稍凹1,平坦2

硬滑0,软粘1

import numpy as np
import treePlotter
np.random.seed(100)
class DecisionTreeClassifier:
    def __init__(self,tree_type='ID3',k_classes=2):
        self.tree_type=tree_type
        self.k_classes=k_classes
        if tree_type=='ID3':
            self.gain_func=self.Gain
        elif tree_type=='CART':
            self.gain_func=self.GiniIndex
        elif tree_type=='C45':
            self.gain_func=self.GainRatio
        else:
            raise ValueError('must be ID3 or CART or C45')
        self.tree=None

    def fit(self,X,y):
        D={}
        D['X']=X
        D['y']=y
        A=np.arange(X.shape[1])
        aVs={}
        for a in A:
            aVs[a]=np.unique(X[:,a])
        self.tree=self.TreeGenerate(D,A,aVs)

    def predict(self,X):
        if self.tree is None:
            raise RuntimeError('cant predict before fit')
        y_pred=[]
        for i in range(X.shape[0]):
            tree = self.tree
            x=X[i]
            while True:
                if not isinstance(tree,dict):
                    y_pred.append(tree)
                    break
                a=list(tree.keys())[0]
                tree=tree[a]
                if isinstance(tree,dict):
                    val = x[a]
                    tree = tree[val]
                else:
                    y_pred.append(tree)
                    break
        return np.array(y_pred)

    def TreeGenerate(self,D,A,aVs):
        X=D['X']
        y=D['y']
        # 情形1
        unique_classes=np.unique(y)
        if len(unique_classes)==1:
            return unique_classes[0]
        flag=True
        for a in A:
            if(len(np.unique(X[:,a]))>1):
                flag=False
                break
        # 情形2
        if flag:
            return np.argmax(np.bincount(y))

        gains=np.zeros((len(A),))
        if self.tree_type=='C45':
            gains=np.zeros((len(A),2))
        for i in range(len(A)):
            gains[i]=self.gain_func(D,A[i])
        #print(gains)
        subA=None
        if self.tree_type=='CART':
            a_best=A[np.argmin(gains)]
            subA=np.delete(A,np.argmin(gains))
        elif self.tree_type=='ID3':
            a_best=A[np.argmax(gains)]
            subA=np.delete(A,np.argmax(gains))
        elif self.tree_type=='C45':
            gain_mean=np.mean(gains[:,0])
            higher_than_mean_indices=np.where(gains[:,0]>=gain_mean)
            higher_than_mean=gains[higher_than_mean_indices,1][0]
            index=higher_than_mean_indices[0][np.argmax(higher_than_mean)]
            a_best=A[index]
            subA=np.delete(A,index)

        tree={a_best:{}}

        for av in aVs[a_best]:
            indices=np.where(X[:,a_best]==av)
            Dv={}
            Dv['X']=X[indices]
            Dv['y']=y[indices]
            if len(Dv['y'])==0:
                tree[a_best][av]=np.argmax(np.bincount(y))
            else:
                tree[a_best][av]=self.TreeGenerate(Dv,subA,aVs)
        return tree
    @classmethod
    def Ent(cls,D):
        y=D['y']
        bin_count=np.bincount(y)
        total=len(y)
        ent=0.
        for k in range(len(bin_count)):
            p_k=bin_count[k]/total
            if p_k!=0:
                 ent+=p_k*np.log2(p_k)
        return -ent

    @classmethod
    def Gain(cls,D,a):
        X=D['X']
        y=D['y']
        aV=np.unique(X[:,a])
        sum=0.
        for v in range(len(aV)):
            Dv={}
            indices=np.where(X[:,a]==aV[v])
            Dv['X']=X[indices]
            Dv['y']=y[indices]
            ent=cls.Ent(Dv)
            sum+=(len(Dv['y'])/len(y)*ent)
        gain=cls.Ent(D)-sum
        return gain

    @classmethod
    def Gini(cls,D):
        y = D['y']
        bin_count = np.bincount(y)
        total = len(y)
        ent = 0.
        for k in range(len(bin_count)):
            p_k = bin_count[k] / total
            ent+=p_k**2
        return 1-ent

    @classmethod
    def GiniIndex(cls,D,a):
        X = D['X']
        y = D['y']
        aV = np.unique(X[:, a])
        sum = 0.
        for v in range(len(aV)):
            Dv = {}
            indices = np.where(X[:, a] == aV[v])
            Dv['X'] = X[indices]
            Dv['y'] = y[indices]
            ent = cls.Gini(Dv)
            sum += (len(Dv['y']) / len(y) * ent)
        gain = sum
        return gain

    @classmethod
    def GainRatio(cls,D,a):
        X = D['X']
        y = D['y']
        aV = np.unique(X[:, a])
        sum = 0.
        intrinsic_value=0.
        for v in range(len(aV)):
            Dv = {}
            indices = np.where(X[:, a] == aV[v])
            Dv['X'] = X[indices]
            Dv['y'] = y[indices]
            ent = cls.Ent(Dv)
            sum += (len(Dv['y']) / len(y) * ent)
            intrinsic_value+=(len(Dv['y'])/len(y))*np.log2(len(Dv['y'])/len(y))
        gain = cls.Ent(D) - sum
        intrinsic_value=-intrinsic_value
        gain_ratio=gain/intrinsic_value
        return np.array([gain,gain_ratio])

if __name__=='__main__':
    watermelon_data = np.array([[0, 0, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0],
                                [1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0],
                                [2, 0, 0, 0, 0, 0], [0, 1, 0, 0, 1, 1],
                                [1, 1, 0, 1, 1, 1], [1, 1, 0, 0, 1, 0],
                                [1, 1, 1, 1, 1, 0], [0, 2, 2, 0, 2, 1],
                                [2, 2, 2, 2, 2, 0], [2, 0, 0, 2, 2, 1],
                                [0, 1, 0, 1, 0, 0], [2, 1, 1, 1, 0, 0],
                                [1, 1, 0, 0, 1, 1], [2, 0, 0, 2, 2, 0],
                                [0, 0, 1, 1, 1, 0]])
    label = np.array([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    X_test=np.array([[0, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 0],
                        [1, 1, 0, 1, 1, 0], [1, 0, 1, 1, 1, 0],
                     [1, 1, 0, 0, 1, 1], [2, 0, 0, 2, 2, 0],
                     [0, 0, 1, 1, 1, 0]])

    decision_clf=DecisionTreeClassifier(tree_type='ID3')
    decision_clf.fit(watermelon_data,label)
    print(decision_clf.tree)
    treePlotter.createPlot(decision_clf.tree)

    y_pred=decision_clf.predict(X_test)
    print('y_pred:',y_pred)

import matplotlib.pyplot as plt
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['FangSong'] 
mpl.rcParams['axes.unicode_minus'] = False 
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', \
                            xytext=centerPt, textcoords='axes fraction', \
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)

def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs

def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = getTreeDepth(secondDict[key]) + 1
        else:
            thisDepth = 1
        if thisDepth > maxDepth:
            maxDepth = thisDepth
    return maxDepth

def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
    yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString)

def plotTree(myTree, parentPt, nodeTxt):
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalw, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            plotTree(secondDict[key], cntrPt, str(key))
        else:
            plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalw
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD

def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    plotTree.totalw = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5 / plotTree.totalw
    plotTree.yOff = 1.0
    plotTree(inTree, (0.5, 1.0), '')
    plt.show()

4.5

import numpy as np
import treePlotter
import sklearn.datasets as datasets
from sklearn.metrics import mean_squared_error
import sklearn.tree as tree
import graphviz

class DecisionTreeRegressor:
    def __init__(self, min_samples_split=3,min_samples_leaf=1,random_state=False):
        self.min_samples_split=min_samples_split
        self.min_samples_leaf=min_samples_leaf
        self.random=random_state
        self.tree = None

    def fit(self, X, y):
        D = {}
        D['X'] = X
        D['y'] = y
        A = np.arange(X.shape[1])
        self.tree = self.TreeGenerate(D, A)

    def predict(self, X):
        if self.tree is None:
            raise RuntimeError('cant predict before fit')
        y_pred = []
        for i in range(X.shape[0]):
            tree = self.tree
            x = X[i]
            while True:
                if not isinstance(tree, dict):
                    y_pred.append(tree)
                    break
                a = list(tree.keys())[0]
                tree = tree[a]
                if isinstance(tree, dict):
                    val = x[a]
                    split_val=float(list(tree.keys())[0][1:])
                    if val<=split_val:
                        tree=tree[list(tree.keys())[0]]
                    else:
                        tree=tree[list(tree.keys())[1]]
                else:
                    y_pred.append(tree)
                    break
        return np.array(y_pred)

    def TreeGenerate(self, D, A):
        X = D['X']
        y = D['y']
        if len(y)<=self.min_samples_split:
            return np.mean(y)
        split_j=None
        split_s=None
        min_val=1.e10
        select_A=A
        if self.random is True:
            d=len(A)
            select_A=np.random.choice(A,size=int(d//2),replace=False)
        for j in select_A:
            for s in np.unique(X[:,j]):
                left_indices=np.where(X[:,j]<=s)[0]
                right_indices=np.where(X[:,j]>s)[0]
                if len(left_indices)<self.min_samples_leaf or len(right_indices)<self.min_samples_leaf:
                    continue
                val=np.sum((y[left_indices]-np.mean(y[left_indices]))**2)+np.sum((y[right_indices]-np.mean(y[right_indices]))**2)
                if val<min_val:
                    split_j=j
                    split_s=s
                    min_val=val

        if split_j is None:
            return np.mean(y)
        tree = {split_j: {}}
        left_indices=np.where(X[:,split_j]<=split_s)[0]
        right_indices=np.where(X[:,split_j]>split_s)[0]
        D_left, D_right = {},{}
        D_left['X'],D_left['y'] = X[left_indices],y[left_indices]
        D_right['X'],D_right['y']=X[right_indices],y[right_indices]
        tree[split_j]['l'+str(split_s)]=self.TreeGenerate(D_left,A)
        tree[split_j]['r'+str(split_s)]=self.TreeGenerate(D_right,A)
        # 当前节点值
        tree[split_j]['val']=np.mean(y)
        return tree


if __name__=='__main__':
    breast_data = datasets.load_boston()
    X, y = breast_data.data, breast_data.target
    X_train, y_train = X[:200], y[:200]
    X_test, y_test = X[200:], y[200:]


    decisiontree_reg=DecisionTreeRegressor(min_samples_split=20,min_samples_leaf=5)
    decisiontree_reg.fit(X_train,y_train)
    print(decisiontree_reg.tree)
    treePlotter.createPlot(decisiontree_reg.tree)
    y_pred=decisiontree_reg.predict(X_test)
    print('tinyml mse:',mean_squared_error(y_test,y_pred))


    sklearn_reg=tree.DecisionTreeRegressor(min_samples_split=20,min_samples_leaf=5,random_state=False)
    sklearn_reg.fit(X_train,y_train)
    print(sklearn_reg.feature_importances_)
    sklearn_pred=sklearn_reg.predict(X_test)
    print('sklearn mse:',mean_squared_error(y_test,sklearn_pred))
    dot_data=tree.export_graphviz(sklearn_reg,out_file=None)
    graph=graphviz.Source(dot_data)

4.9

相关推荐
小虎牙^O^19 分钟前
2024春秋杯密码题第一、二天WP
python·密码学
梦魇梦狸º1 小时前
mac 配置 python 环境变量
chrome·python·macos
查理零世1 小时前
算法竞赛之差分进阶——等差数列差分 python
python·算法·差分
查士丁尼·绵3 小时前
面试-字符串1
python
小兜全糖(xdqt)4 小时前
python中单例模式
开发语言·python·单例模式
Python数据分析与机器学习4 小时前
python高级加密算法AES对信息进行加密和解密
开发语言·python
noravinsc5 小时前
python md5加密
前端·javascript·python
唯余木叶下弦声5 小时前
PySpark之金融数据分析(Spark RDD、SQL练习题)
大数据·python·sql·数据分析·spark·pyspark
程序媛徐师姐5 小时前
Python基于Django的社区爱心养老管理系统设计与实现【附源码】
python·django·社区爱心养老·社区爱心养老管理系统·python社区养老管理系统·社区养老·社区养老管理系统
叫我:松哥5 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django