1. 红黑树
1.1 红黑树的概念
红黑树,是一种二叉搜索树,但在每个节点上增加一个存储为表示节点的颜色,可以使Red或Black。通过对任何一条从根到叶子的路径上各个节点着色方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因而是接近平衡的。
1.2 红黑树的性质
1.每个节点不是红色就是黑色
2.根节点是黑色的
3.如果一个节点是红色的,则它的两个孩子节点是黑色的
4.对于每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点
5.每个叶子节点都是黑色的(此处的叶子节点指的是空节点)
1.3 红黑树节点的定义
cpp
enum Color
{
RED,
BLACK
};
template <class K, class V>
struct RBTreeNode
{
pair<K, V> _kv;//节点内的数据采用Key、Value形式
RBTreeNode<K, V>* _left;//该节点的左孩子
RBTreeNode<K, V>* _right;//该节点的右孩子
RBTreeNode<K, V>* _parent;//该节点的双亲
Color _col;
RBTreeNode(const pair<K, V>& kv)
:_kv(kv)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
{}
};
1.4 红黑树的定义(代码不包含删除)
cpp
template <class K, class V>
class RBTree
{
public:
typedef RBTreeNode<K, V> Node;
RBTree() = default;
RBTree(const RBTree<K, V>& t)
{
_root = Copy(t._root);
}
RBTree<K, V>& operator=(RBTree<K, V> t)
{
swap(_root, t._root);
return *this;
}
~RBTree()
{
Destory(_root);
_root = nullptr;
}
bool insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
cur->_col = RED;
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)//如果叔叔存在且为红
{
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else//叔叔不存在或叔叔不存在且为黑
{
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
}
break;
}
else
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
uncle->_col = parent->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
if (parent->_right == cur)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
}
break;
}
}
_root->_col = BLACK;
return true;
}
void InOrder()
{
_InOrder(_root);
}
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < key)
{
cur = cur->_right;
}
else if (cur->_kv.first > key)
{
cur = cur->_left;
}
else
{
return cur;
}
}
return nullptr;
}
private:
Node* Copy(Node* root)
{
if (root == nullptr)
return nullptr;
Node* newRoot = new Node(root->_kv);//不一样的地方
newRoot->_left = Copy(root->_left);
newRoot->_right = Copy(root->_right);
return newRoot;
}
void Destory(Node* root)
{
if (root == nullptr)
return;
Destory(root->_left);
Destory(root->_right);
delete root;
}
void _InOrder(Node* root)
{
if (root == nullptr)
return;
_InOrder(root->_left);
cout << root->_kv.first << ":" << root->_kv.second << endl;
_InOrder(root->_right);
}
void RotateL(Node* parent)
{
Node* subr = parent->_right;
Node* subrl = subr->_left;
parent->_right = subrl;
if (subrl)
subrl->_parent = parent;
Node* parentParent = parent->_parent;
subr->_left = parent;
parent->_parent = subr;
if (parentParent == nullptr)
{
_root = subr;
subr->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subr;
}
else
{
parentParent->_right = subr;
}
subr->_parent = parentParent;
}
}
void RotateR(Node* parent)
{
Node* subl = parent->_left;//parent的左孩子
Node* sublr = subl->_right;//parent左孩子的右孩子
parent->_left = sublr;//30的右孩子作为双亲的左孩子
if (sublr)//如果30的左孩子的右孩子存在,更新双亲
sublr->_parent = parent;
Node* parentParent = parent->_parent;
// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
subl->_right = parent;//60作为30的右孩子
parent->_parent = subl;//更新60的双亲
if (parentParent == nullptr)// 如果60是根节点,根新指向根节点的指针
{
_root = subl;
subl->_parent = nullptr;
}
else // 如果60是子树,可能是其双亲的左子树,也可能是右子树
{
if (parent == parentParent->_left)
{
parentParent->_left = subl;
}
else
{
parentParent->_right = subl;
}
subl->_parent = parentParent;//更新30的双亲
}
}
Node* _root = nullptr;
};
1.5 红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(log_2 N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。