简述循环神经网络RNN

1.why RNN

CNN:处理图像之间没有时间/先后关系

RNN:对于录像,图像之间也许有时间/先后顺序,此时使用CNN效果不会很好,同理和人类的语言相关的方面时间顺序就更为重要了

2.RNN和CNN之间的关联

RNN和CNN本质上其实一致,只是RNN中多了一些权重(W,U)的计算,而且这些线性运算之间都是加法。这些额外的权重虽然使得矩阵的运算变大了,但是并没有使得问题变得特别复杂。也正是由于这些被额外使用的信号,使得我们能够处理序列的问题。

3.RNN由于增加条件产生的问题

  • 梯度爆炸(表现出模型的不稳定、不鲁棒)
  • 梯度消失(出现更多,随着连乘的出现不可避免的出现梯度消失)
    • 有时也许并不是LSTM可以减少梯度消失,使得训练变好,只是提出者的故事讲得好。
    • LSTM(提出类似ResNet的暂存单元形式)
      • 类似电子控制的思想(加门 -- 权重),使得记忆不要一直保存,需要的记忆知识多一些,门就开都大一些(权重值给大一些);需要记忆小一些,门就小一点(权重值小一点);甚至不需要记忆的时候权值为0--关门。
      • 我们也可以在其他领域算法中加一些门来放大哪些内容,阻挡那些内容。
      • 同时我们也要考虑添加了一些内容之后,模型是否还能够计算,能否解释。
    • GRU
      • 对LSTM的一些简化
      • 两个方法的比较研究也许已经被很多博客或者其他人研究过了,所以完成的模型比较研究不是很好做。
相关推荐
Warren2Lynch4 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale4 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant4 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_509138344 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
soldierluo5 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms15 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑5 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei5 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc
GISer_Jing5 小时前
AI Agent 智能体系统:A2A通信与资源优化之道
人工智能·aigc
Dev7z6 小时前
基于深度学习的车辆分类方法研究与实现-填补国内新能源车型和品牌识别空白
深度学习·yolo