简述循环神经网络RNN

1.why RNN

CNN:处理图像之间没有时间/先后关系

RNN:对于录像,图像之间也许有时间/先后顺序,此时使用CNN效果不会很好,同理和人类的语言相关的方面时间顺序就更为重要了

2.RNN和CNN之间的关联

RNN和CNN本质上其实一致,只是RNN中多了一些权重(W,U)的计算,而且这些线性运算之间都是加法。这些额外的权重虽然使得矩阵的运算变大了,但是并没有使得问题变得特别复杂。也正是由于这些被额外使用的信号,使得我们能够处理序列的问题。

3.RNN由于增加条件产生的问题

  • 梯度爆炸(表现出模型的不稳定、不鲁棒)
  • 梯度消失(出现更多,随着连乘的出现不可避免的出现梯度消失)
    • 有时也许并不是LSTM可以减少梯度消失,使得训练变好,只是提出者的故事讲得好。
    • LSTM(提出类似ResNet的暂存单元形式)
      • 类似电子控制的思想(加门 -- 权重),使得记忆不要一直保存,需要的记忆知识多一些,门就开都大一些(权重值给大一些);需要记忆小一些,门就小一点(权重值小一点);甚至不需要记忆的时候权值为0--关门。
      • 我们也可以在其他领域算法中加一些门来放大哪些内容,阻挡那些内容。
      • 同时我们也要考虑添加了一些内容之后,模型是否还能够计算,能否解释。
    • GRU
      • 对LSTM的一些简化
      • 两个方法的比较研究也许已经被很多博客或者其他人研究过了,所以完成的模型比较研究不是很好做。
相关推荐
李昊哲小课27 分钟前
深度学习进阶教程:用卷积神经网络识别图像
人工智能·深度学习·cnn
AndrewHZ30 分钟前
【AI分析进行时】AI 时代软件开发新范式:基于斯坦福CS146S课程分析
人工智能·llm·软件开发·斯坦福·cs146s·能力升级·代码agent
玖日大大33 分钟前
Seedream-4.0:新一代生成式 AI 框架的技术深度与实践落地
人工智能
七夜zippoe33 分钟前
告别API碎片化与高成本 - 用AI Ping打造下一代智能编程工作流
人工智能·架构·大模型·智能编程·ai ping·模型聚合
Luminbox紫创测控2 小时前
汽车自动驾驶的太阳光模拟应用研究
人工智能·自动驾驶·汽车
吴佳浩7 小时前
大模型量化部署终极指南:让700亿参数的AI跑进你的显卡
人工智能·python·gpu
跨境卫士苏苏8 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
珠海西格电力8 小时前
零碳园区工业厂房光伏一体化(BIPV)基础规划
大数据·运维·人工智能·智慧城市·能源
土星云SaturnCloud8 小时前
不止是替代:从机械风扇的可靠性困局,看服务器散热技术新范式
服务器·网络·人工智能·ai
小马爱打代码8 小时前
Spring AI:搭建自定义 MCP Server:获取 QQ 信息
java·人工智能·spring