简述循环神经网络RNN

1.why RNN

CNN:处理图像之间没有时间/先后关系

RNN:对于录像,图像之间也许有时间/先后顺序,此时使用CNN效果不会很好,同理和人类的语言相关的方面时间顺序就更为重要了

2.RNN和CNN之间的关联

RNN和CNN本质上其实一致,只是RNN中多了一些权重(W,U)的计算,而且这些线性运算之间都是加法。这些额外的权重虽然使得矩阵的运算变大了,但是并没有使得问题变得特别复杂。也正是由于这些被额外使用的信号,使得我们能够处理序列的问题。

3.RNN由于增加条件产生的问题

  • 梯度爆炸(表现出模型的不稳定、不鲁棒)
  • 梯度消失(出现更多,随着连乘的出现不可避免的出现梯度消失)
    • 有时也许并不是LSTM可以减少梯度消失,使得训练变好,只是提出者的故事讲得好。
    • LSTM(提出类似ResNet的暂存单元形式)
      • 类似电子控制的思想(加门 -- 权重),使得记忆不要一直保存,需要的记忆知识多一些,门就开都大一些(权重值给大一些);需要记忆小一些,门就小一点(权重值小一点);甚至不需要记忆的时候权值为0--关门。
      • 我们也可以在其他领域算法中加一些门来放大哪些内容,阻挡那些内容。
      • 同时我们也要考虑添加了一些内容之后,模型是否还能够计算,能否解释。
    • GRU
      • 对LSTM的一些简化
      • 两个方法的比较研究也许已经被很多博客或者其他人研究过了,所以完成的模型比较研究不是很好做。
相关推荐
aigcapi4 小时前
RAG 系统的黑盒测试:从算法对齐视角解析 GEO 优化的技术指标体系
大数据·人工智能·算法
上进小菜猪5 小时前
基于深度学习的河道垃圾检测系统设计(YOLOv8)
人工智能
上天夭5 小时前
模型训练篇
人工智能·深度学习·机器学习
小徐Chao努力6 小时前
【Langchain4j-Java AI开发】09-Agent智能体工作流
java·开发语言·人工智能
Blossom.1186 小时前
AI编译器实战:从零手写算子融合与自动调度系统
人工智能·python·深度学习·机器学习·flask·transformer·tornado
Coder_Boy_6 小时前
SpringAI与LangChain4j的智能应用-(理论篇2)
人工智能·spring boot·langchain·springai
却道天凉_好个秋6 小时前
OpenCV(四十八):图像查找
人工智能·opencv·计算机视觉
Coder_Boy_6 小时前
SpringAI与LangChain4j的智能应用-(理论篇3)
java·人工智能·spring boot·langchain
GetcharZp6 小时前
工地“火眼金睛”!手把手带你用 YOLO11 实现安全帽佩戴检测
人工智能·计算机视觉
Codebee6 小时前
Ooder A2UI架构白皮书
人工智能·响应式编程