简述循环神经网络RNN

1.why RNN

CNN:处理图像之间没有时间/先后关系

RNN:对于录像,图像之间也许有时间/先后顺序,此时使用CNN效果不会很好,同理和人类的语言相关的方面时间顺序就更为重要了

2.RNN和CNN之间的关联

RNN和CNN本质上其实一致,只是RNN中多了一些权重(W,U)的计算,而且这些线性运算之间都是加法。这些额外的权重虽然使得矩阵的运算变大了,但是并没有使得问题变得特别复杂。也正是由于这些被额外使用的信号,使得我们能够处理序列的问题。

3.RNN由于增加条件产生的问题

  • 梯度爆炸(表现出模型的不稳定、不鲁棒)
  • 梯度消失(出现更多,随着连乘的出现不可避免的出现梯度消失)
    • 有时也许并不是LSTM可以减少梯度消失,使得训练变好,只是提出者的故事讲得好。
    • LSTM(提出类似ResNet的暂存单元形式)
      • 类似电子控制的思想(加门 -- 权重),使得记忆不要一直保存,需要的记忆知识多一些,门就开都大一些(权重值给大一些);需要记忆小一些,门就小一点(权重值小一点);甚至不需要记忆的时候权值为0--关门。
      • 我们也可以在其他领域算法中加一些门来放大哪些内容,阻挡那些内容。
      • 同时我们也要考虑添加了一些内容之后,模型是否还能够计算,能否解释。
    • GRU
      • 对LSTM的一些简化
      • 两个方法的比较研究也许已经被很多博客或者其他人研究过了,所以完成的模型比较研究不是很好做。
相关推荐
数据分析能量站9 分钟前
神经网络-AlexNet
人工智能·深度学习·神经网络
Ven%15 分钟前
如何修改pip全局缓存位置和全局安装包存放路径
人工智能·python·深度学习·缓存·自然语言处理·pip
szxinmai主板定制专家29 分钟前
【NI国产替代】基于国产FPGA+全志T3的全国产16振动+2转速(24bits)高精度终端采集板卡
人工智能·fpga开发
YangJZ_ByteMaster37 分钟前
EndtoEnd Object Detection with Transformers
人工智能·深度学习·目标检测·计算机视觉
Anlici38 分钟前
模型训练与数据分析
人工智能·机器学习
余~~185381628001 小时前
NFC 碰一碰发视频源码搭建技术详解,支持OEM
开发语言·人工智能·python·音视频
唔皇万睡万万睡1 小时前
五子棋小游戏设计(Matlab)
人工智能·matlab·游戏程序
视觉语言导航2 小时前
AAAI-2024 | 大语言模型赋能导航决策!NavGPT:基于大模型显式推理的视觉语言导航
人工智能·具身智能
volcanical2 小时前
Bert各种变体——RoBERTA/ALBERT/DistillBert
人工智能·深度学习·bert
知来者逆2 小时前
Binoculars——分析证实大语言模型生成文本的检测和引用量按学科和国家明确显示了使用偏差的多样性和对内容类型的影响
人工智能·深度学习·语言模型·自然语言处理·llm·大语言模型