【聚类】主成分分析 和 t-SNE 降维

1 主成分分析PCA

PCA 是一种线性降维技术,旨在通过选择具有最大方差的特征方向(称为主成分)来压缩数据,同时尽可能减少信息损失。

1.1 原理


1.2 优缺点

python 复制代码
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits

# 加载数据集
digits = load_digits()
X = digits.data
y = digits.target

# PCA 降维到 2 维
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

# 可视化
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='Spectral', s=15)
plt.colorbar()
plt.title("PCA 降维结果")
plt.xlabel("主成分1")
plt.ylabel("主成分2")
plt.show()

2. t-Distributed Stochastic Neighbor Embedding

t-SNE 是一种非线性降维方法,主要用于高维数据的可视化。它通过保留局部相邻点间的关系,将高维数据映射到低维空间。

2.1 原理

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/c703ff4be4e54573844b5a2c3c895486.png![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/050ae0b4a5164e72bf8b1ee513d1b19b.png)![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/66e01c3e405d4cf9bfcacd287b315f75.png)

2.2 优缺点

python 复制代码
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits

# 加载数据集
digits = load_digits()
X = digits.data
y = digits.target

# t-SNE 降维到 2 维
tsne = TSNE(n_components=2, random_state=42, perplexity=30, n_iter=1000)
X_tsne = tsne.fit_transform(X)

# 可视化
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y, cmap='Spectral', s=15)
plt.colorbar()
plt.title("t-SNE 降维结果")
plt.show()
相关推荐
没有梦想的咸鱼185-1037-16638 小时前
AI大模型支持下的:CMIP6数据分析与可视化、降尺度技术与气候变化的区域影响、极端气候分析
人工智能·python·深度学习·机器学习·chatgpt·数据挖掘·数据分析
人大博士的交易之路12 小时前
龙虎榜——20250822
大数据·数据挖掘·数据分析·缠中说禅·龙虎榜·道琼斯结构
fanzhix13 小时前
线性回归学习
学习·机器学习·线性回归
OAFD.19 小时前
机器学习之线性回归:原理、实现与实践
人工智能·机器学习·线性回归
Gloria_niki1 天前
机器学习之K 均值聚类算法
人工智能·机器学习
没有梦想的咸鱼185-1037-16631 天前
SWMM排水管网水力、水质建模及在海绵与水环境中的应用
数据仓库·人工智能·数据挖掘·数据分析
codeyanwu1 天前
nanoGPT 部署
python·深度学习·机器学习
Loving_enjoy1 天前
智能合约漏洞检测技术综述:守护区块链世界的“自动售货机”
经验分享·机器学习·课程设计·facebook
一个专注api接口开发的小白1 天前
手把手教程:使用 Postman 测试与调试淘宝商品详情 API
前端·数据挖掘·api
严文文-Chris1 天前
【大模型量化、蒸馏、剪枝、微调小结】
算法·机器学习·剪枝