Spark优化--开发调优、资源调优、数据倾斜调优和shuffle调优等

针对Spark优化,我们可以从多个角度进行,包括开发调优、资源调优、数据倾斜调优和shuffle调优等。以下是一些具体的优化方法:

1. 开发调优

  • 避免创建重复的RDD:对于同一份数据,只应该创建一个RDD,避免创建多个RDD来代表同一份数据。
  • 合理使用算子 :选择最合适的算子进行操作,比如使用reduceByKey代替groupByKey进行局部聚合,使用combineByKey进行自定义聚合。
  • 特殊操作优化:对于特殊的操作,如join操作,考虑使用广播变量或调整数据分区来优化。

2. 资源调优

  • 并行度设置 :通过调整spark.default.parallelism参数来设置并行度,提高Spark的并行处理能力。
  • 内存管理 :调整spark.driver.memoryspark.executor.memory等参数,最大化利用可用的内存。
  • 动态资源调度:在Yarn模式下,开启动态资源调度,根据当前应用任务的负载情况,实时增减Executor个数。

3. 数据倾斜调优

  • 数据重分区 :使用repartitioncoalesce进行数据重分区,解决数据分布不均匀的问题。
  • 局部聚合 :使用mapPartitionreduceByKey的局部聚合来减少数据倾斜的影响。
  • 避免shuffle操作:在可能的情况下,通过逻辑调整避免执行shuffle类算子,从而避免数据倾斜。

4. Shuffle调优

  • 减少磁盘IO :合理设置spark.shuffle.file.buffer参数,减少磁盘IO。
  • 使用reduceByKey代替groupByKeyreduceByKeygroupByKey更高效,因为它在每个节点上进行局部聚合,减少了数据传输。

5. 序列化优化

  • 使用Kryo序列化:Spark支持使用Kryo序列化库,其性能比Java序列化高10倍左右。需要注册所有需要进行序列化的自定义类型。

6. 存储格式优化

  • 基于列的存储格式:使用Parquet、ORC等基于列的存储格式,提高数据的压缩率和查询效率。

7. 查询优化

  • Spark SQL优化器和索引:使用Spark SQL中的优化器和索引提高查询性能。

8. 硬件优化

  • 性能更好的硬件设备:使用更高速的网络、更大的内存等硬件设备提升Spark性能。

通过上述优化方法,可以显著提升Spark作业的性能和资源利用率。需要注意的是,优化是一个持续的过程,需要根据具体的业务场景和数据特点进行调整和优化。

相关推荐
北邮-吴怀玉10 小时前
2.2.1.1 大数据方法论与实践指南-公司产品&功能命名管理
大数据·数据治理
码龄3年 审核中15 小时前
说说SSH的端口转发
大数据·运维·ssh
SeaTunnel16 小时前
(二)从分层架构到数据湖仓架构:数据仓库分层下的技术架构与举例
大数据·数据仓库·数据分析·数据同步
数据库安全16 小时前
牛品推荐|分类分级效能飞跃:美创智能数据安全分类分级平台
大数据·人工智能·分类
数据库安全16 小时前
《金融电子化》:构建金融韧性运行安全体系:从灾备管理到主动防御新范式
大数据·安全·金融
GG向前冲17 小时前
【大数据】Spark MLlib 机器学习流水线搭建
大数据·机器学习·spark-ml
我要升天!19 小时前
Git的原理与使用 -- 基础操作
大数据·服务器·git·elasticsearch
阿里云大数据AI技术19 小时前
云栖实录 | 实时计算 Flink 全新升级 - 全栈流处理平台助力实时智能
大数据·人工智能
鲜枣课堂20 小时前
重新安全定义,IMS算网融合加速企业专网AI+场景落地
大数据·人工智能·安全
阿里云大数据AI技术20 小时前
云栖实录 | 驰骋在数据洪流上:Flink+Hologres驱动零跑科技实时计算的应用与实践
大数据·flink