Spark优化--开发调优、资源调优、数据倾斜调优和shuffle调优等

针对Spark优化,我们可以从多个角度进行,包括开发调优、资源调优、数据倾斜调优和shuffle调优等。以下是一些具体的优化方法:

1. 开发调优

  • 避免创建重复的RDD:对于同一份数据,只应该创建一个RDD,避免创建多个RDD来代表同一份数据。
  • 合理使用算子 :选择最合适的算子进行操作,比如使用reduceByKey代替groupByKey进行局部聚合,使用combineByKey进行自定义聚合。
  • 特殊操作优化:对于特殊的操作,如join操作,考虑使用广播变量或调整数据分区来优化。

2. 资源调优

  • 并行度设置 :通过调整spark.default.parallelism参数来设置并行度,提高Spark的并行处理能力。
  • 内存管理 :调整spark.driver.memoryspark.executor.memory等参数,最大化利用可用的内存。
  • 动态资源调度:在Yarn模式下,开启动态资源调度,根据当前应用任务的负载情况,实时增减Executor个数。

3. 数据倾斜调优

  • 数据重分区 :使用repartitioncoalesce进行数据重分区,解决数据分布不均匀的问题。
  • 局部聚合 :使用mapPartitionreduceByKey的局部聚合来减少数据倾斜的影响。
  • 避免shuffle操作:在可能的情况下,通过逻辑调整避免执行shuffle类算子,从而避免数据倾斜。

4. Shuffle调优

  • 减少磁盘IO :合理设置spark.shuffle.file.buffer参数,减少磁盘IO。
  • 使用reduceByKey代替groupByKeyreduceByKeygroupByKey更高效,因为它在每个节点上进行局部聚合,减少了数据传输。

5. 序列化优化

  • 使用Kryo序列化:Spark支持使用Kryo序列化库,其性能比Java序列化高10倍左右。需要注册所有需要进行序列化的自定义类型。

6. 存储格式优化

  • 基于列的存储格式:使用Parquet、ORC等基于列的存储格式,提高数据的压缩率和查询效率。

7. 查询优化

  • Spark SQL优化器和索引:使用Spark SQL中的优化器和索引提高查询性能。

8. 硬件优化

  • 性能更好的硬件设备:使用更高速的网络、更大的内存等硬件设备提升Spark性能。

通过上述优化方法,可以显著提升Spark作业的性能和资源利用率。需要注意的是,优化是一个持续的过程,需要根据具体的业务场景和数据特点进行调整和优化。

相关推荐
柒间2 小时前
Elasticsearch 常用操作命令整合 (cURL 版本)
大数据·数据库·elasticsearch
G皮T5 小时前
【Elasticsearch】映射:fielddata 详解
大数据·elasticsearch·搜索引擎·映射·搜索·mappings·fielddata
viperrrrrrrrrr75 小时前
大数据学习(132)-HIve数据分析
大数据·hive·学习
夜影风6 小时前
大数据清洗加工概述
大数据
余+185381628007 小时前
短视频矩阵系统文案创作功能开发实践,定制化开发
大数据·人工智能
阿里云大数据AI技术10 小时前
一体系数据平台的进化:基于阿里云 EMR Serverless Spark的持续演进
大数据·spark·serverless
TDengine (老段)11 小时前
TDengine 开发指南—— UDF函数
java·大数据·数据库·物联网·数据分析·tdengine·涛思数据
Stanford_110611 小时前
关于大数据的基础知识(二)——国内大数据产业链分布结构
大数据·开发语言·物联网·微信小程序·微信公众平台·twitter·微信开放平台
G皮T13 小时前
【Elasticsearch】一个图书馆的案例解释 Elasticsearch
大数据·elasticsearch·搜索引擎·全文检索·kibana·索引·index