【矩阵分析】向量求和转为矩阵

B = [ B 1 , B 2 , ... , B N ] T ∈ R N × 1 \boldsymbol B = [B_1,B_2,\dots,B_N]^T \in \mathbb{R}^{N \times 1} B=[B1,B2,...,BN]T∈RN×1, W = [ W 1 , W 2 , ... , W N ] T ∈ R N × N r \boldsymbol W = [\boldsymbol W_1,\boldsymbol W_2,\dots,\boldsymbol W_N]^T \in \mathbb{R}^{N \times N_r} W=[W1,W2,...,WN]T∈RN×Nr, H = [ H 1 , H 2 , ... , H N ] T ∈ R N × N r \boldsymbol H = [\boldsymbol H_1,\boldsymbol H_2,\dots,\boldsymbol H_N]^T \in \mathbb{R}^{N \times N_r} H=[H1,H2,...,HN]T∈RN×Nr

将 ∑ n ∈ N ( W n H n B n ) \sum_{n \in \mathcal{N}}(\boldsymbol W_n \boldsymbol H_nB_n) ∑n∈N(WnHnBn)写成矩阵形式
∑ n ∈ N ( W n H n B n ) = Tr ( W ⊤ diag ( B ) H ) \sum_{n \in \mathcal{N}} (\boldsymbol{W}_n \boldsymbol{H}_n B_n) =\text{Tr}(\boldsymbol{W}^\top \text{diag}(\boldsymbol{B}) \boldsymbol{H}) ∑n∈N(WnHnBn)=Tr(W⊤diag(B)H)

代码验证

matlab 复制代码
% 定义参数
N = 5; % 样本数
Nr = 3; % 每个向量的列维度

% 随机生成矩阵和向量
W = rand(N, Nr);  % N x Nr 矩阵
H = rand(N, Nr);  % N x Nr 矩阵
B = rand(N, 1);   % N x 1 列向量

% 逐项求和方式计算
sum_result = 0;
for n = 1:N
    sum_result = sum_result + W(n, :) * H(n, :)' * B(n);
end

% 矩阵形式计算
diag_B = diag(B); % 对角矩阵
trace_result = trace(W' * diag_B * H);

% 显示结果
disp('逐项求和结果:');
disp(sum_result);
disp('矩阵形式结果:');
disp(trace_result);

% 验证是否相等
if abs(sum_result - trace_result) < 1e-10
    disp('验证成功:两者相等!');
else
    disp('验证失败:两者不相等!');
end
相关推荐
独自破碎E2 小时前
BISHI45 小红的矩阵染色
线性代数·矩阵
TracyCoder12317 小时前
LeetCode Hot100(46/100)——74. 搜索二维矩阵
算法·leetcode·矩阵
20 小时前
2.12矩阵问题,发牌,数字金字塔
线性代数·算法·矩阵
passxgx1 天前
12.2 协方差矩阵与联合概率
线性代数·矩阵·概率论
Σίσυφος19001 天前
四元数 欧拉角 旋转矩阵
人工智能·算法·矩阵
赛博云推-Twitter热门霸屏工具1 天前
从手动运营到自动化矩阵:Twitter热门霸屏的技术化实现逻辑
矩阵·自动化·twitter
weixin_553132071 天前
探索Vortex开源GPGPU:RISC-V SIMT架构(4-2),TCU 矩阵计算(1)
矩阵·架构·github·risc-v·wmma·simt·tcu
AI科技星1 天前
张祥前统一场论 22 个核心公式及常数
服务器·人工智能·线性代数·算法·矩阵·概率论
维度攻城狮1 天前
Python控制系统仿真案例-RLC电路系统
python·线性代数·矩阵
㓗冽1 天前
矩阵问题(二维数组)-基础题70th + 发牌(二维数组)-基础题71th + 数字金字塔(二维数组)-基础题72th
c++·算法·矩阵