【矩阵分析】向量求和转为矩阵

B = [ B 1 , B 2 , ... , B N ] T ∈ R N × 1 \boldsymbol B = [B_1,B_2,\dots,B_N]^T \in \mathbb{R}^{N \times 1} B=[B1,B2,...,BN]T∈RN×1, W = [ W 1 , W 2 , ... , W N ] T ∈ R N × N r \boldsymbol W = [\boldsymbol W_1,\boldsymbol W_2,\dots,\boldsymbol W_N]^T \in \mathbb{R}^{N \times N_r} W=[W1,W2,...,WN]T∈RN×Nr, H = [ H 1 , H 2 , ... , H N ] T ∈ R N × N r \boldsymbol H = [\boldsymbol H_1,\boldsymbol H_2,\dots,\boldsymbol H_N]^T \in \mathbb{R}^{N \times N_r} H=[H1,H2,...,HN]T∈RN×Nr

将 ∑ n ∈ N ( W n H n B n ) \sum_{n \in \mathcal{N}}(\boldsymbol W_n \boldsymbol H_nB_n) ∑n∈N(WnHnBn)写成矩阵形式
∑ n ∈ N ( W n H n B n ) = Tr ( W ⊤ diag ( B ) H ) \sum_{n \in \mathcal{N}} (\boldsymbol{W}_n \boldsymbol{H}_n B_n) =\text{Tr}(\boldsymbol{W}^\top \text{diag}(\boldsymbol{B}) \boldsymbol{H}) ∑n∈N(WnHnBn)=Tr(W⊤diag(B)H)

代码验证

matlab 复制代码
% 定义参数
N = 5; % 样本数
Nr = 3; % 每个向量的列维度

% 随机生成矩阵和向量
W = rand(N, Nr);  % N x Nr 矩阵
H = rand(N, Nr);  % N x Nr 矩阵
B = rand(N, 1);   % N x 1 列向量

% 逐项求和方式计算
sum_result = 0;
for n = 1:N
    sum_result = sum_result + W(n, :) * H(n, :)' * B(n);
end

% 矩阵形式计算
diag_B = diag(B); % 对角矩阵
trace_result = trace(W' * diag_B * H);

% 显示结果
disp('逐项求和结果:');
disp(sum_result);
disp('矩阵形式结果:');
disp(trace_result);

% 验证是否相等
if abs(sum_result - trace_result) < 1e-10
    disp('验证成功:两者相等!');
else
    disp('验证失败:两者不相等!');
end
相关推荐
Tisfy39 分钟前
LeetCode 2536.子矩阵元素加 1:二维差分数组
算法·leetcode·矩阵
醒过来摸鱼1 小时前
多重组合问题与矩阵配额问题
线性代数·矩阵·概率论
小欣加油2 小时前
leetcode 2536 子矩阵元素加1
数据结构·c++·算法·leetcode·矩阵
com_4sapi16 小时前
2025 权威认证头部矩阵系统全景对比发布 双榜单交叉验证
大数据·c语言·人工智能·算法·矩阵·机器人
ChoSeitaku18 小时前
线代强化NO6|矩阵|例题|小结
算法·机器学习·矩阵
跨境海王哥20 小时前
Facebook矩阵引流:从防封机制拆解
线性代数·矩阵·facebook
西西弗Sisyphus21 小时前
线性代数 - 二阶矩阵的行列式、向量叉积(Cross product)的模长与平行四边形面积的关系
线性代数·矩阵·行列式
西西弗Sisyphus2 天前
线性代数 - 3 阶方阵的行列式 可视化
线性代数·矩阵·行列式·满秩·降秩
西西弗Sisyphus2 天前
线性代数 - 矩阵乘法能换括号,不能换顺序;满足结合律,不满足交换律
线性代数·矩阵
gihigo19982 天前
MATLAB中生成混淆矩阵
开发语言·matlab·矩阵