接前一篇文章:ESP32-S3模组上跑通ES8388(11)
二、利用ESP-ADF操作ES8388
2. 详细解析
上一回解析了es8388_init函数中的第5段代码,本回继续往下解析。为了便于理解和回顾,再次贴出es8388_init函数源码,在components\audio_hal\driver\es8388\es8388.c中,如下:
cpp
/**
* @return
* - (-1) Error
* - (0) Success
*/
esp_err_t es8388_init(audio_hal_codec_config_t *cfg)
{
int res = 0;
#ifdef CONFIG_ESP_LYRAT_V4_3_BOARD
headphone_detect_init(get_headphone_detect_gpio());
#endif
res = i2c_init(); // ESP32 in master mode
res |= es_write_reg(ES8388_ADDR, ES8388_DACCONTROL3, 0x04); // 0x04 mute/0x00 unmute&ramp;DAC unmute and disabled digital volume control soft ramp
/* Chip Control and Power Management */
res |= es_write_reg(ES8388_ADDR, ES8388_CONTROL2, 0x50);
res |= es_write_reg(ES8388_ADDR, ES8388_CHIPPOWER, 0x00); //normal all and power up all
// Disable the internal DLL to improve 8K sample rate
res |= es_write_reg(ES8388_ADDR, 0x35, 0xA0);
res |= es_write_reg(ES8388_ADDR, 0x37, 0xD0);
res |= es_write_reg(ES8388_ADDR, 0x39, 0xD0);
res |= es_write_reg(ES8388_ADDR, ES8388_MASTERMODE, cfg->i2s_iface.mode); //CODEC IN I2S SLAVE MODE
/* dac */
res |= es_write_reg(ES8388_ADDR, ES8388_DACPOWER, 0xC0); //disable DAC and disable Lout/Rout/1/2
res |= es_write_reg(ES8388_ADDR, ES8388_CONTROL1, 0x12); //Enfr=0,Play&Record Mode,(0x17-both of mic&paly)
// res |= es_write_reg(ES8388_ADDR, ES8388_CONTROL2, 0); //LPVrefBuf=0,Pdn_ana=0
res |= es_write_reg(ES8388_ADDR, ES8388_DACCONTROL1, 0x18);//1a 0x18:16bit iis , 0x00:24
res |= es_write_reg(ES8388_ADDR, ES8388_DACCONTROL2, 0x02); //DACFsMode,SINGLE SPEED; DACFsRatio,256
res |= es_write_reg(ES8388_ADDR, ES8388_DACCONTROL16, 0x00); // 0x00 audio on LIN1&RIN1, 0x09 LIN2&RIN2
res |= es_write_reg(ES8388_ADDR, ES8388_DACCONTROL17, 0x90); // only left DAC to left mixer enable 0db
res |= es_write_reg(ES8388_ADDR, ES8388_DACCONTROL20, 0x90); // only right DAC to right mixer enable 0db
res |= es_write_reg(ES8388_ADDR, ES8388_DACCONTROL21, 0x80); // set internal ADC and DAC use the same LRCK clock, ADC LRCK as internal LRCK
res |= es_write_reg(ES8388_ADDR, ES8388_DACCONTROL23, 0x00); // vroi=0
res |= es_write_reg(ES8388_ADDR, ES8388_DACCONTROL24, 0x1E); // Set L1 R1 L2 R2 volume. 0x00: -30dB, 0x1E: 0dB, 0x21: 3dB
res |= es_write_reg(ES8388_ADDR, ES8388_DACCONTROL25, 0x1E);
res |= es_write_reg(ES8388_ADDR, ES8388_DACCONTROL26, 0);
res |= es_write_reg(ES8388_ADDR, ES8388_DACCONTROL27, 0);
// res |= es8388_set_adc_dac_volume(ES_MODULE_DAC, 0, 0); // 0db
int tmp = 0;
if (AUDIO_HAL_DAC_OUTPUT_LINE2 == cfg->dac_output) {
tmp = DAC_OUTPUT_LOUT1 | DAC_OUTPUT_ROUT1;
} else if (AUDIO_HAL_DAC_OUTPUT_LINE1 == cfg->dac_output) {
tmp = DAC_OUTPUT_LOUT2 | DAC_OUTPUT_ROUT2;
} else {
tmp = DAC_OUTPUT_LOUT1 | DAC_OUTPUT_LOUT2 | DAC_OUTPUT_ROUT1 | DAC_OUTPUT_ROUT2;
}
res |= es_write_reg(ES8388_ADDR, ES8388_DACPOWER, tmp); //0x3c Enable DAC and Enable Lout/Rout/1/2
/* adc */
res |= es_write_reg(ES8388_ADDR, ES8388_ADCPOWER, 0xFF);
res |= es_write_reg(ES8388_ADDR, ES8388_ADCCONTROL1, 0xbb); // MIC Left and Right channel PGA gain
tmp = 0;
if (AUDIO_HAL_ADC_INPUT_LINE1 == cfg->adc_input) {
tmp = ADC_INPUT_LINPUT1_RINPUT1;
} else if (AUDIO_HAL_ADC_INPUT_LINE2 == cfg->adc_input) {
tmp = ADC_INPUT_LINPUT2_RINPUT2;
} else {
tmp = ADC_INPUT_DIFFERENCE;
}
res |= es_write_reg(ES8388_ADDR, ES8388_ADCCONTROL2, tmp); //0x00 LINSEL & RINSEL, LIN1/RIN1 as ADC Input; DSSEL,use one DS Reg11; DSR, LINPUT1-RINPUT1
res |= es_write_reg(ES8388_ADDR, ES8388_ADCCONTROL3, 0x02);
res |= es_write_reg(ES8388_ADDR, ES8388_ADCCONTROL4, 0x0c); // 16 Bits length and I2S serial audio data format
res |= es_write_reg(ES8388_ADDR, ES8388_ADCCONTROL5, 0x02); //ADCFsMode,singel SPEED,RATIO=256
//ALC for Microphone
res |= es8388_set_adc_dac_volume(ES_MODULE_ADC, 0, 0); // 0db
res |= es_write_reg(ES8388_ADDR, ES8388_ADCPOWER, 0x09); // Power on ADC, enable LIN&RIN, power off MICBIAS, and set int1lp to low power mode
/* es8388 PA gpio_config */
gpio_config_t io_conf;
memset(&io_conf, 0, sizeof(io_conf));
io_conf.mode = GPIO_MODE_OUTPUT;
io_conf.pin_bit_mask = BIT64(get_pa_enable_gpio());
io_conf.pull_down_en = 0;
io_conf.pull_up_en = 0;
gpio_config(&io_conf);
/* enable es8388 PA */
es8388_pa_power(true);
codec_dac_volume_config_t vol_cfg = ES8388_DAC_VOL_CFG_DEFAULT();
dac_vol_handle = audio_codec_volume_init(&vol_cfg);
ESP_LOGI(ES_TAG, "init,out:%02x, in:%02x", cfg->dac_output, cfg->adc_input);
return res;
}
接下来是第6段代码:
cpp
res |= es_write_reg(ES8388_ADDR, ES8388_MASTERMODE, cfg->i2s_iface.mode); //CODEC IN I2S SLAVE MODE
ES8388_MASTERMODE
ES8388_MASTERMODE宏也在components\audio_hal\driver\es8388\es8388.h中定义,如下:
cpp
#define ES8388_MASTERMODE 0x08
其代表了ES8388的Master Mode Control寄存器。参见ES8388数据手册中的以下部分:
代码中将该寄存器的值设置为了cfg->i2s_iface.mode。那么这个cfg->i2s_iface.mode是什么值?在哪里被赋值的?
要弄清楚这些问题,就必须从es8388_init函数的参数audio_hal_codec_config_t *cfg以及调用它的地方传入的对应实参讲起。
先来看es8388_init函数是在哪里调用的。前文书讲过,es8388_init函数实际上对应的是audio_hal_func_t AUDIO_CODEC_ES8388_DEFAULT_HANDLE中的.audio_codec_initialize成员函数指针。再来回顾一下,在components\audio_hal\driver\es8388\es8388.c中,代码如下:
也就是说,实际需要搜索ESP-ADF工程中调用audio_codec_initialize的地方。经过搜索,真正调用的地方只有一处,在components\audio_hal\audio_hal.c中audio_hal_init函数中,代码如下:
其实这里是个圈。本来就是沿着这条路径分析下来的,现在又回到了起点。不过这里并不是循环,只是由于之前没有关注,因此我们在此需要会看一下,弄清楚调用audio_hal_init函数时,传入的audio_hal_conf对应的实参是什么值。
再次在工程路径下搜索"audio_hal_init",得到结果如下:
这里,仍以ESP32-Lyrat V4_3开发板为例,看一下其调用audio_hal_init时传入的audio_hal_conf对应的值是多少。在components\audio_board\lyrat_v4_3\board.c中,代码如下:
cpp
audio_hal_handle_t audio_board_codec_init(void)
{
audio_hal_codec_config_t audio_codec_cfg = AUDIO_CODEC_DEFAULT_CONFIG();
audio_hal_handle_t codec_hal = audio_hal_init(&audio_codec_cfg, &AUDIO_CODEC_ES8388_DEFAULT_HANDLE);
AUDIO_NULL_CHECK(TAG, codec_hal, return NULL);
return codec_hal;
}
由代码可知,调用audio_hal_init函数时,传给其参数audio_hal_codec_config_t *audio_hal_conf的实参为&audio_codec_cfg,而audio_codec_cfg又是通过AUDIO_CODEC_DEFAULT_CONFIG()得到的。AUDIO_CODEC_DEFAULT_CONFIG()是一个宏函数,其定义在components\audio_board\lyrat_v4_3\board_def.h,代码如下:
cpp
#define AUDIO_CODEC_DEFAULT_CONFIG(){ \
.adc_input = AUDIO_HAL_ADC_INPUT_LINE1, \
.dac_output = AUDIO_HAL_DAC_OUTPUT_ALL, \
.codec_mode = AUDIO_HAL_CODEC_MODE_BOTH, \
.i2s_iface = { \
.mode = AUDIO_HAL_MODE_SLAVE, \
.fmt = AUDIO_HAL_I2S_NORMAL, \
.samples = AUDIO_HAL_48K_SAMPLES, \
.bits = AUDIO_HAL_BIT_LENGTH_16BITS, \
}, \
};
由此就能知道cfg->i2s_iface.mode的值是什么了,是AUDIO_HAL_MODE_SLAVE。
AUDIO_HAL_MODE_SLAVE宏在components\audio_hal\include\audio_hal.h中定义,如下:
cpp
/**
* @brief Select I2S interface operating mode i.e. master or slave for audio codec chip
*/
typedef enum {
AUDIO_HAL_MODE_SLAVE = 0x00, /*!< set slave mode */
AUDIO_HAL_MODE_MASTER = 0x01, /*!< set master mode */
} audio_hal_iface_mode_t;
这就可以回到代码中了:
cpp
res |= es_write_reg(ES8388_ADDR, ES8388_MASTERMODE, cfg->i2s_iface.mode); //CODEC IN I2S SLAVE MODE
ES8388_MASTERMODE
ES8388_MASTERMODE宏也在components\audio_hal\driver\es8388\es8388.h中定义,如下:
cpp
#define ES8388_MASTERMODE 0x08
其代表了ES8388的Master Mode Control寄存器。参见ES8388数据手册中的以下部分:
代码中将该寄存器的值设置为了0x00,也就是0b00000000,意义如下:
- MSC(bit 7)
0:slave serial port mode。从串行端口模式。
- MCLKDIV2(bit 6)
0:MCLK not divide (default)。MCLK不分频(默认)。
- BCLK_INV(bit 5)
0:normal (default)。正常(默认)。
- BCLKDIV(bit 4:0)
0b00000:master mode BCLK generated automatically based on the clock table (default)。根据时钟表自动生成主模式BCLK(默认)。
至此,es8388_init函数中的第6段代码就解析完了,下一回继续解析该函数后续内容。