【大数据学习 | 面经】Spark 3.x 中的AQE(自适应查询执行)

Spark 3.x 中的自适应查询执行(Adaptive Query Execution,简称 AQE)通过多种方式提升性能,主要包括以下几个方面:

  1. 动态合并 Shuffle 分区(Coalescing Post Shuffle Partitions)

    • 当 Shuffle 操作完成后,AQE 可以根据 Map 输出的统计信息自动合并过小的分区,以减少 Reduce 阶段的分区数量,从而提高查询效率。这个特性通过配置 spark.sql.adaptive.coalescePartitions.enabled 开启,默认在 Spark 3.2.0 及以后的版本中是启用的
  2. 动态切换 Join 策略

    • 在 Spark 2.x 中,broadcast-hash join 只能通过参数控制,不易精确控制。Spark 3.x 的 AQE 能够根据运行时的统计信息自动将 sort-merge join 切换到 broadcast-hash join,优化性能。
  3. 动态优化数据倾斜的 Join

    • 在 Spark 2.x 中,需要手动处理数据倾斜问题。Spark 3.x 的 AQE 可以自动将倾斜的分区分成更小的分区进行 join,极大优化性能。
  4. 动态裁剪分区(Dynamic Partition Pruning)

    • 在 Spark 2.x 中,优化器很难在编译时确定哪些分区可以跳过不读,导致读了一些不需要的数据。Spark 3.x 的 AQE 会首先过滤维表,根据过滤后的结果找到只需要读事实表的哪些分区,提升性能。
  5. 自动处理数据倾斜

    • AQE 自动检测并处理数据倾斜,通过将大型倾斜分区拆分为更小的分区,确保工作负载平衡,提高性能。
  6. 动态优化洗牌分区

    • AQE 根据实际数据的大小动态调整洗牌分区的数量,优化并行性和开销之间的平衡,增强资源管理,减少内存使用和执行时间。
  7. 减少手动调优需求

    • 传统的查询执行通常需要手动调优以实现最佳性能。AQE 自动化了许多这一过程,减少了手动干预的需求,使得开箱即用即可获得良好性能。

通过这些机制,AQE 在运行时动态优化执行计划,根据实时数据特征调整,从而提升查询性能,减少资源消耗,并减少手动调优的需求。这些改进使得 Spark 3.x 在处理大型或倾斜数据集时,相较于 Spark 2.x,性能有了显著提升。

相关推荐
Elastic 中国社区官方博客2 小时前
DevRel 通讯 — 2026 年 2 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·jina
caoz3 小时前
AI的春节档
大数据·人工智能·深度学习·机器学习·计算机视觉
samFuB4 小时前
面板数据-人力资源和社会保障事业发展统计核心指标数据(2000-2024)
大数据
爆米花byh4 小时前
在RockyLinux9环境的Doris单机版安装
linux·数据库·database
Lalolander4 小时前
工厂手工统计耗时耗力怎么办?
大数据·制造执行系统·工厂管理系统·工厂工艺管理·工厂生产进度管理
小王毕业啦5 小时前
2010-2024年 上市公司-突破性创新和渐进性创新(数据+代码+文献)
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·经管数据
诗词在线6 小时前
孟浩然诗作数字化深度实战:诗词在线的意象挖掘、检索优化与多场景部署
大数据·人工智能·算法
赵谨言6 小时前
基于Python实现地理空间数据批处理技术探讨及实现--以“多规合一“总体规划数据空间叠加分析为例
大数据·开发语言·经验分享·python
天竺鼠不该去劝架6 小时前
RPA 平台选型指南(2026):金智维 vs 来也RPA vs 艺赛旗 vs 阿里云 RPA 深度对比
大数据·数据库·人工智能
❀͜͡傀儡师6 小时前
基于mybatis-plus进行加解密 Spring Boot Starter
spring boot·oracle·mybatis