【大数据学习 | 面经】Spark 3.x 中的AQE(自适应查询执行)

Spark 3.x 中的自适应查询执行(Adaptive Query Execution,简称 AQE)通过多种方式提升性能,主要包括以下几个方面:

  1. 动态合并 Shuffle 分区(Coalescing Post Shuffle Partitions)

    • 当 Shuffle 操作完成后,AQE 可以根据 Map 输出的统计信息自动合并过小的分区,以减少 Reduce 阶段的分区数量,从而提高查询效率。这个特性通过配置 spark.sql.adaptive.coalescePartitions.enabled 开启,默认在 Spark 3.2.0 及以后的版本中是启用的
  2. 动态切换 Join 策略

    • 在 Spark 2.x 中,broadcast-hash join 只能通过参数控制,不易精确控制。Spark 3.x 的 AQE 能够根据运行时的统计信息自动将 sort-merge join 切换到 broadcast-hash join,优化性能。
  3. 动态优化数据倾斜的 Join

    • 在 Spark 2.x 中,需要手动处理数据倾斜问题。Spark 3.x 的 AQE 可以自动将倾斜的分区分成更小的分区进行 join,极大优化性能。
  4. 动态裁剪分区(Dynamic Partition Pruning)

    • 在 Spark 2.x 中,优化器很难在编译时确定哪些分区可以跳过不读,导致读了一些不需要的数据。Spark 3.x 的 AQE 会首先过滤维表,根据过滤后的结果找到只需要读事实表的哪些分区,提升性能。
  5. 自动处理数据倾斜

    • AQE 自动检测并处理数据倾斜,通过将大型倾斜分区拆分为更小的分区,确保工作负载平衡,提高性能。
  6. 动态优化洗牌分区

    • AQE 根据实际数据的大小动态调整洗牌分区的数量,优化并行性和开销之间的平衡,增强资源管理,减少内存使用和执行时间。
  7. 减少手动调优需求

    • 传统的查询执行通常需要手动调优以实现最佳性能。AQE 自动化了许多这一过程,减少了手动干预的需求,使得开箱即用即可获得良好性能。

通过这些机制,AQE 在运行时动态优化执行计划,根据实时数据特征调整,从而提升查询性能,减少资源消耗,并减少手动调优的需求。这些改进使得 Spark 3.x 在处理大型或倾斜数据集时,相较于 Spark 2.x,性能有了显著提升。

相关推荐
拓端研究室5 分钟前
2025医疗人工智能报告:AI应用、IVD市场、健康科技|附240+份报告PDF、数据、可视化模板汇总下载
大数据·人工智能·物联网
柒.梧.9 分钟前
Spring JDBC实战指南:从基础操作到事务管理全解析
数据库·oracle
天远数科10 分钟前
Node.js全栈开发:深度集成天远贷前风险报告接口打造风控中台
大数据·node.js
Data_agent13 分钟前
微店商品列表API接口指南
大数据·数据库·python
Vic1010114 分钟前
PostgreSQL 中序列(bigserial 和手动序列)的使用与注意事项
java·大数据·数据库·postgresql
武汉唯众智创15 分钟前
应用型大数据实训室实验教学方案:一份基于开源技术的完整实训指南
大数据·开源·大数据实训室·开源技术·大数据实验室
武子康16 分钟前
大数据-203 scikit-learn 决策树剪枝参数:max_depth/min_samples_leaf 到 min_impurity_decrease
大数据·后端·机器学习
ywyy679826 分钟前
品牌GEO优化系统开发:区域流量、用户点击、到店转化的数据分析技巧
大数据·geo系统开发·geo系统·geo优化系统开发·geo优化系统·品牌geo
IT观测39 分钟前
选择可信数据空间安全服务商:源堡科技以风险管控能力破局
大数据·科技·安全