【大数据学习 | 面经】Spark 3.x 中的AQE(自适应查询执行)

Spark 3.x 中的自适应查询执行(Adaptive Query Execution,简称 AQE)通过多种方式提升性能,主要包括以下几个方面:

  1. 动态合并 Shuffle 分区(Coalescing Post Shuffle Partitions)

    • 当 Shuffle 操作完成后,AQE 可以根据 Map 输出的统计信息自动合并过小的分区,以减少 Reduce 阶段的分区数量,从而提高查询效率。这个特性通过配置 spark.sql.adaptive.coalescePartitions.enabled 开启,默认在 Spark 3.2.0 及以后的版本中是启用的
  2. 动态切换 Join 策略

    • 在 Spark 2.x 中,broadcast-hash join 只能通过参数控制,不易精确控制。Spark 3.x 的 AQE 能够根据运行时的统计信息自动将 sort-merge join 切换到 broadcast-hash join,优化性能。
  3. 动态优化数据倾斜的 Join

    • 在 Spark 2.x 中,需要手动处理数据倾斜问题。Spark 3.x 的 AQE 可以自动将倾斜的分区分成更小的分区进行 join,极大优化性能。
  4. 动态裁剪分区(Dynamic Partition Pruning)

    • 在 Spark 2.x 中,优化器很难在编译时确定哪些分区可以跳过不读,导致读了一些不需要的数据。Spark 3.x 的 AQE 会首先过滤维表,根据过滤后的结果找到只需要读事实表的哪些分区,提升性能。
  5. 自动处理数据倾斜

    • AQE 自动检测并处理数据倾斜,通过将大型倾斜分区拆分为更小的分区,确保工作负载平衡,提高性能。
  6. 动态优化洗牌分区

    • AQE 根据实际数据的大小动态调整洗牌分区的数量,优化并行性和开销之间的平衡,增强资源管理,减少内存使用和执行时间。
  7. 减少手动调优需求

    • 传统的查询执行通常需要手动调优以实现最佳性能。AQE 自动化了许多这一过程,减少了手动干预的需求,使得开箱即用即可获得良好性能。

通过这些机制,AQE 在运行时动态优化执行计划,根据实时数据特征调整,从而提升查询性能,减少资源消耗,并减少手动调优的需求。这些改进使得 Spark 3.x 在处理大型或倾斜数据集时,相较于 Spark 2.x,性能有了显著提升。

相关推荐
n***s90912 分钟前
【MySQL基础篇】概述及SQL指令:DDL及DML
sql·mysql·oracle
东哥说-MES|从入门到精通2 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
jnrjian3 小时前
FRA中 keep的backup set 不保险
sql·oracle
万岳软件开发小城3 小时前
教育APP/小程序开发标准版图:课程、题库、直播、学习一站式梳理
大数据·php·uniapp·在线教育系统源码·教育app开发·教育软件开发
STLearner4 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘
数字化顾问4 小时前
(65页PPT)大型集团物料主数据管理系统建设规划方案(附下载方式)
大数据·运维·人工智能
记得记得就1515 小时前
【MySQL数据库管理】
数据库·mysql·oracle
老蒋新思维5 小时前
创客匠人 2025 全球创始人 IP+AI 万人高峰论坛:AI 赋能下知识变现与 IP 变现的实践沉淀与行业启示
大数据·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人
河南博为智能科技有限公司6 小时前
高集成度国产八串口联网服务器:工业级多设备联网解决方案
大数据·运维·服务器·数据库·人工智能·物联网
无代码专家8 小时前
设备巡检数字化解决方案:构建高效闭环管理体系
java·大数据·人工智能