【大数据学习 | 面经】Spark 3.x 中的AQE(自适应查询执行)

Spark 3.x 中的自适应查询执行(Adaptive Query Execution,简称 AQE)通过多种方式提升性能,主要包括以下几个方面:

  1. 动态合并 Shuffle 分区(Coalescing Post Shuffle Partitions)

    • 当 Shuffle 操作完成后,AQE 可以根据 Map 输出的统计信息自动合并过小的分区,以减少 Reduce 阶段的分区数量,从而提高查询效率。这个特性通过配置 spark.sql.adaptive.coalescePartitions.enabled 开启,默认在 Spark 3.2.0 及以后的版本中是启用的
  2. 动态切换 Join 策略

    • 在 Spark 2.x 中,broadcast-hash join 只能通过参数控制,不易精确控制。Spark 3.x 的 AQE 能够根据运行时的统计信息自动将 sort-merge join 切换到 broadcast-hash join,优化性能。
  3. 动态优化数据倾斜的 Join

    • 在 Spark 2.x 中,需要手动处理数据倾斜问题。Spark 3.x 的 AQE 可以自动将倾斜的分区分成更小的分区进行 join,极大优化性能。
  4. 动态裁剪分区(Dynamic Partition Pruning)

    • 在 Spark 2.x 中,优化器很难在编译时确定哪些分区可以跳过不读,导致读了一些不需要的数据。Spark 3.x 的 AQE 会首先过滤维表,根据过滤后的结果找到只需要读事实表的哪些分区,提升性能。
  5. 自动处理数据倾斜

    • AQE 自动检测并处理数据倾斜,通过将大型倾斜分区拆分为更小的分区,确保工作负载平衡,提高性能。
  6. 动态优化洗牌分区

    • AQE 根据实际数据的大小动态调整洗牌分区的数量,优化并行性和开销之间的平衡,增强资源管理,减少内存使用和执行时间。
  7. 减少手动调优需求

    • 传统的查询执行通常需要手动调优以实现最佳性能。AQE 自动化了许多这一过程,减少了手动干预的需求,使得开箱即用即可获得良好性能。

通过这些机制,AQE 在运行时动态优化执行计划,根据实时数据特征调整,从而提升查询性能,减少资源消耗,并减少手动调优的需求。这些改进使得 Spark 3.x 在处理大型或倾斜数据集时,相较于 Spark 2.x,性能有了显著提升。

相关推荐
zmd-zk2 小时前
flinksql的滚动窗口实现
大数据
Elastic 中国社区官方博客2 小时前
使用数据层进行数据生命周期管理
大数据·数据库·elasticsearch·搜索引擎·全文检索·时序数据库
星光璀璨山河无恙2 小时前
【Word 知识点】
大数据·word
工业互联网专业3 小时前
Python毕业设计选题:基于大数据的淘宝电子产品数据分析的设计与实现-django+spark+spider
大数据·python·数据分析·spark·django·课程设计·spider
forestsea3 小时前
【Elasticsearch】实现分布式系统日志高效追踪
大数据·elasticsearch·搜索引擎·日志搜索
xfcloud3 小时前
Flink on Yarn安装配置,大数据技能竞赛(容器环境)
大数据·flink
小麦项目管理指南3 小时前
工程企业需要什么样的财务软件?
大数据·数据库·信息可视化·项目管理
Kika写代码3 小时前
【大数据技术基础】 课程 第1章 大数据技术概述 大数据基础编程、实验和案例教程(第2版)
java·大数据·数据仓库·hive·分布式·spark
大数据魔法师3 小时前
Hadoop生态圈框架部署(十)- Flume部署
大数据·hadoop·flume
全栈开发帅帅3 小时前
基于springboot+vue实现的创新创业学分管理系统 (源码+L文+ppt)4-111
spring boot·后端·oracle