Spark 3.x 中的自适应查询执行(Adaptive Query Execution,简称 AQE)通过多种方式提升性能,主要包括以下几个方面:
-
动态合并 Shuffle 分区(Coalescing Post Shuffle Partitions):
- 当 Shuffle 操作完成后,AQE 可以根据 Map 输出的统计信息自动合并过小的分区,以减少 Reduce 阶段的分区数量,从而提高查询效率。这个特性通过配置
spark.sql.adaptive.coalescePartitions.enabled
开启,默认在 Spark 3.2.0 及以后的版本中是启用的
- 当 Shuffle 操作完成后,AQE 可以根据 Map 输出的统计信息自动合并过小的分区,以减少 Reduce 阶段的分区数量,从而提高查询效率。这个特性通过配置
-
动态切换 Join 策略:
- 在 Spark 2.x 中,broadcast-hash join 只能通过参数控制,不易精确控制。Spark 3.x 的 AQE 能够根据运行时的统计信息自动将 sort-merge join 切换到 broadcast-hash join,优化性能。
-
动态优化数据倾斜的 Join:
- 在 Spark 2.x 中,需要手动处理数据倾斜问题。Spark 3.x 的 AQE 可以自动将倾斜的分区分成更小的分区进行 join,极大优化性能。
-
动态裁剪分区(Dynamic Partition Pruning):
- 在 Spark 2.x 中,优化器很难在编译时确定哪些分区可以跳过不读,导致读了一些不需要的数据。Spark 3.x 的 AQE 会首先过滤维表,根据过滤后的结果找到只需要读事实表的哪些分区,提升性能。
-
自动处理数据倾斜:
- AQE 自动检测并处理数据倾斜,通过将大型倾斜分区拆分为更小的分区,确保工作负载平衡,提高性能。
-
动态优化洗牌分区:
- AQE 根据实际数据的大小动态调整洗牌分区的数量,优化并行性和开销之间的平衡,增强资源管理,减少内存使用和执行时间。
-
减少手动调优需求:
- 传统的查询执行通常需要手动调优以实现最佳性能。AQE 自动化了许多这一过程,减少了手动干预的需求,使得开箱即用即可获得良好性能。
通过这些机制,AQE 在运行时动态优化执行计划,根据实时数据特征调整,从而提升查询性能,减少资源消耗,并减少手动调优的需求。这些改进使得 Spark 3.x 在处理大型或倾斜数据集时,相较于 Spark 2.x,性能有了显著提升。