【大数据学习 | 面经】Spark 3.x 中的AQE(自适应查询执行)

Spark 3.x 中的自适应查询执行(Adaptive Query Execution,简称 AQE)通过多种方式提升性能,主要包括以下几个方面:

  1. 动态合并 Shuffle 分区(Coalescing Post Shuffle Partitions)

    • 当 Shuffle 操作完成后,AQE 可以根据 Map 输出的统计信息自动合并过小的分区,以减少 Reduce 阶段的分区数量,从而提高查询效率。这个特性通过配置 spark.sql.adaptive.coalescePartitions.enabled 开启,默认在 Spark 3.2.0 及以后的版本中是启用的
  2. 动态切换 Join 策略

    • 在 Spark 2.x 中,broadcast-hash join 只能通过参数控制,不易精确控制。Spark 3.x 的 AQE 能够根据运行时的统计信息自动将 sort-merge join 切换到 broadcast-hash join,优化性能。
  3. 动态优化数据倾斜的 Join

    • 在 Spark 2.x 中,需要手动处理数据倾斜问题。Spark 3.x 的 AQE 可以自动将倾斜的分区分成更小的分区进行 join,极大优化性能。
  4. 动态裁剪分区(Dynamic Partition Pruning)

    • 在 Spark 2.x 中,优化器很难在编译时确定哪些分区可以跳过不读,导致读了一些不需要的数据。Spark 3.x 的 AQE 会首先过滤维表,根据过滤后的结果找到只需要读事实表的哪些分区,提升性能。
  5. 自动处理数据倾斜

    • AQE 自动检测并处理数据倾斜,通过将大型倾斜分区拆分为更小的分区,确保工作负载平衡,提高性能。
  6. 动态优化洗牌分区

    • AQE 根据实际数据的大小动态调整洗牌分区的数量,优化并行性和开销之间的平衡,增强资源管理,减少内存使用和执行时间。
  7. 减少手动调优需求

    • 传统的查询执行通常需要手动调优以实现最佳性能。AQE 自动化了许多这一过程,减少了手动干预的需求,使得开箱即用即可获得良好性能。

通过这些机制,AQE 在运行时动态优化执行计划,根据实时数据特征调整,从而提升查询性能,减少资源消耗,并减少手动调优的需求。这些改进使得 Spark 3.x 在处理大型或倾斜数据集时,相较于 Spark 2.x,性能有了显著提升。

相关推荐
鸿乃江边鸟10 分钟前
Spark datafusion comet向量化插件CometPlugin
大数据·spark·native
牛客企业服务14 分钟前
牛客CEO叶向宇:从AI工具迈向AI Agent,构建人机协作新关系
大数据·人工智能
Ydwlcloud39 分钟前
个人博客与内容站部署在AWS:2026年的理性选择与更优策略
大数据·服务器·人工智能·云计算·aws
爬山算法1 小时前
Hibernate(41)Hibernate的延迟加载和急加载的区别是什么?
java·oracle·hibernate
中华网商业1 小时前
绿色金融创新模式助力能源转型
大数据·金融·能源
腾迹1 小时前
2026年企业微信SCRM系统服务推荐:微盛·企微管家的AI私域增长方案
大数据·人工智能
Python_Study20252 小时前
制造业企业如何构建高效数据采集系统:从挑战到实践
大数据·网络·数据结构·人工智能·架构
oMcLin2 小时前
如何在 Debian 11 上通过构建大数据湖,使用 Apache Spark 加速电商平台的数据分析与实时推荐引擎
spark·debian·apache
驭白.2 小时前
敏捷与韧性:新能源汽车智慧供应链的协同网络
大数据·人工智能·自动化·汽车·数字化转型·新能源汽车
tjjucheng2 小时前
专业小程序定制开发公司推荐
大数据·小程序