动手学深度学习10.5. 多头注意力-笔记&练习(PyTorch)

本节课程地址:多头注意力代码_哔哩哔哩_bilibili

本节教材地址:10.5. 多头注意力 --- 动手学深度学习 2.0.0 documentation

本节开源代码:...>d2l-zh>pytorch>chapter_multilayer-perceptrons>multihead-attention.ipynb


多头注意力

在实践中,当给定相同的查询、键和值的集合时, 我们希望模型可以基于相同的注意力机制学习到不同的行为, 然后将不同的行为作为知识组合起来, 捕获序列内各种范围的依赖关系 (例如,短距离依赖和长距离依赖关系)。 因此,允许注意力机制组合使用查询、键和值的不同 子空间表示(representation subspaces)可能是有益的。

为此,与其只使用单独一个注意力汇聚, 我们可以用独立学习得到的 组不同的 线性投影 (linear projections)来变换查询、键和值。 然后,这 组变换后的查询、键和值将并行地送到注意力汇聚中。 最后,将这 个注意力汇聚的输出拼接在一起, 并且通过另一个可以学习的线性投影进行变换, 以产生最终输出。 这种设计被称为多头注意力 (multihead attention) (="https://zh.d2l.ai/chapter_references/zreferences.html#id174">Vaswaniet al., 2017)。 对于 个注意力汇聚输出,每一个注意力汇聚都被称作一个(head)。 图10.5.1 展示了使用全连接层来实现可学习的线性变换的多头注意力。

模型

在实现多头注意力之前,让我们用数学语言将这个模型形式化地描述出来。 给定查询 、 键 和 值 , 每个注意力头 )的计算方法为:

其中,可学习的参数包括 , 以及代表注意力汇聚的函数 可以是 10.3节 中的 加性注意力和缩放点积注意力。 多头注意力的输出需要经过另一个线性转换, 它对应着 个头连结后的结果,因此其可学习参数是

基于这种设计,每个头都可能会关注输入的不同部分, 可以表示比简单加权平均值更复杂的函数。

import math
import torch
from torch import nn
from d2l import torch as d2l

实现

在实现过程中通常[选择缩放点积注意力作为每一个注意力头 ]。 为了避免计算代价和参数代价的大幅增长, 我们设定 。 值得注意的是,如果将查询、键和值的线性变换的输出数量设置为 , 则可以并行计算 个头。 在下面的实现中, 是通过参数num_hiddens指定的。

#@save
class MultiHeadAttention(nn.Module):
    """多头注意力"""
    def __init__(self, key_size, query_size, value_size, num_hiddens,
                 num_heads, dropout, bias=False, **kwargs):
        super(MultiHeadAttention, self).__init__(**kwargs)
        self.num_heads = num_heads
        self.attention = d2l.DotProductAttention(dropout)
        self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)
        self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)
        self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)
        self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)

    def forward(self, queries, keys, values, valid_lens):
        # queries,keys,values的形状:
        # (batch_size,查询或者"键-值"对的个数,num_hiddens)
        # valid_lens 的形状:
        # (batch_size,)或(batch_size,查询的个数)
        # 经过变换后,输出的queries,keys,values 的形状:
        # (batch_size*num_heads,查询或者"键-值"对的个数,
        # num_hiddens/num_heads)
        queries = transpose_qkv(self.W_q(queries), self.num_heads)
        keys = transpose_qkv(self.W_k(keys), self.num_heads)
        values = transpose_qkv(self.W_v(values), self.num_heads)

        if valid_lens is not None:
            # 在轴0,将第一项(标量或者矢量)复制num_heads次,
            # 然后如此复制第二项,然后诸如此类。
            valid_lens = torch.repeat_interleave(
                valid_lens, repeats=self.num_heads, dim=0)

        # output的形状:(batch_size*num_heads,查询的个数,
        # num_hiddens/num_heads)
        output = self.attention(queries, keys, values, valid_lens)

        # output_concat的形状:(batch_size,查询的个数,num_hiddens)
        output_concat = transpose_output(output, self.num_heads)
        return self.W_o(output_concat)

为了能够[使多个头并行计算 ], 上面的MultiHeadAttention类将使用下面定义的两个转置函数。 具体来说,transpose_output函数反转了transpose_qkv函数的操作。

#@save
def transpose_qkv(X, num_heads):
    """为了多注意力头的并行计算而变换形状"""
    # 输入X的形状:(batch_size,查询或者"键-值"对的个数,num_hiddens)
    # 输出X的形状:(batch_size,查询或者"键-值"对的个数,num_heads,
    # num_hiddens/num_heads)
    X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)

    # 输出X的形状:(batch_size,num_heads,查询或者"键-值"对的个数,
    # num_hiddens/num_heads)
    X = X.permute(0, 2, 1, 3)

    # 最终输出的形状:(batch_size*num_heads,查询或者"键-值"对的个数,
    # num_hiddens/num_heads)
    return X.reshape(-1, X.shape[2], X.shape[3])


#@save
def transpose_output(X, num_heads):
    """逆转transpose_qkv函数的操作"""
    # 输入X的形状:(batch_size*num_heads,查询或者"键-值"对的个数,num_hiddens/num_heads)
    # 输出X的形状:(batch_size,num_heads,查询或者"键-值"对的个数,num_hiddens/num_heads)
    X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
    # 输出X的形状:(batch_size,查询或者"键-值"对的个数,num_heads,num_hiddens/num_heads)
    X = X.permute(0, 2, 1, 3)
    # 最终输出的形状:((batch_size,查询或者"键-值"对的个数,num_hiddens)
    return X.reshape(X.shape[0], X.shape[1], -1)

下面使用键和值相同的小例子来[测试 ]我们编写的MultiHeadAttention类。 多头注意力输出的形状是(batch_sizenum_queriesnum_hiddens)。

num_hiddens, num_heads = 100, 5
attention = MultiHeadAttention(num_hiddens, num_hiddens, num_hiddens,
                               num_hiddens, num_heads, 0.5)
attention.eval()
MultiHeadAttention(
  (attention): DotProductAttention(
    (dropout): Dropout(p=0.5, inplace=False)
  )
  (W_q): Linear(in_features=100, out_features=100, bias=False)
  (W_k): Linear(in_features=100, out_features=100, bias=False)
  (W_v): Linear(in_features=100, out_features=100, bias=False)
  (W_o): Linear(in_features=100, out_features=100, bias=False)
)
batch_size, num_queries = 2, 4
num_kvpairs, valid_lens =  6, torch.tensor([3, 2])
X = torch.ones((batch_size, num_queries, num_hiddens))
Y = torch.ones((batch_size, num_kvpairs, num_hiddens))
attention(X, Y, Y, valid_lens).shape
torch.Size([2, 4, 100])

小结

  • 多头注意力融合了来自于多个注意力汇聚的不同知识,这些知识的不同来源于相同的查询、键和值的不同的子空间表示。
  • 基于适当的张量操作,可以实现多头注意力的并行计算。

练习

  1. 分别可视化这个实验中的多个头的注意力权重。

解:
代码如下:

attention.attention.attention_weights.shape
# (batch_size*num_heads,查询的个数,"键-值"对的个数)

输出结果:
torch.Size([10, 4, 6])

d2l.show_heatmaps(
    attention.attention.attention_weights.reshape((2,5,4,6)), 
    xlabel='Key positions', ylabel='Query positions', titles=['Head %d' % i for i in range(1, 6)],
    figsize=(8, 3.5))

输出结果:

  1. 假设有一个完成训练的基于多头注意力的模型,现在希望修剪最不重要的注意力头以提高预测速度。如何设计实验来衡量注意力头的重要性呢?

解:
首先定义评判注意力头重要性的指标,比如预测速度等;
然后采用单一变量法,修剪某一个头或某几个头的组合,重新训练模型,并在验证集上评估重要性指标的变化; 最后根据重要性指标的变化,判断最不重要的一个或几个注意力头,并修剪。

相关推荐
qw9491 小时前
Maven学习笔记
笔记·学习·maven
有一个好名字5 小时前
sqlfather笔记
笔记
freexyn6 小时前
Matlab自学笔记四十五:日期时间型和字符、字符串以及double型的相互转换方法
开发语言·笔记·matlab
CSBLOG6 小时前
Day30上 - ChromaDB 向量数据库
数据库·人工智能·深度学习·oracle
&zzz6 小时前
PyTorch和 torchvision 和torch 和cu1版本不匹配
人工智能·pytorch·python
pro_or_check8 小时前
笔记,如何区分大端、小端?
笔记
Rousson8 小时前
硬件学习笔记--34 GB/T17215.321相关内容介绍
网络·笔记·学习
王了了哇9 小时前
精度论文:【Focaler-IoU: More Focused Intersection over Union Loss】
人工智能·pytorch·深度学习·计算机视觉·transformer
懒洋洋爱睡觉10 小时前
考研计算机组成原理——零基础学习的笔记
笔记·学习·考研
Artificial Idiots11 小时前
Computer Vision Arxiv Daily 2025.01.14
人工智能·深度学习·机器学习·计算机视觉·computer vision