flinksql的滚动窗口实现

滚动窗口在flinksql中是TUMBLE

eventTime

复制代码
package com.bigdata.day08;


import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;


public class _01_flinkSql_eventTime_tumble {
    /**
     * eventTime + 滚动窗口 60秒 + 3秒的水印
     * 
     * 
     * 数据格式
     * {"username":"zs","price":20,"event_time":"2023-07-18 12:12:04"}
     * {"username":"zs","price":20,"event_time":"2023-07-18 12:13:00"}
     * {"username":"zs","price":20,"event_time":"2023-07-18 12:13:03"}
     * {"username":"zs","price":20,"event_time":"2023-07-18 12:14:03"}
     */

    public static void main(String[] args) throws Exception {

        //1. env-准备环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

        //2. 创建表
        tenv.executeSql("CREATE TABLE table1 (\n" +
                "  `username` String,\n" +
                "  `price` int,\n" +
                "  `event_time` TIMESTAMP(3),\n" +
                "   watermark for event_time as event_time - interval '3' second\n" +
                ") WITH (\n" +
                "  'connector' = 'kafka',\n" +
                "  'topic' = 'topic1',\n" +
                "  'properties.bootstrap.servers' = 'bigdata01:9092,bigdata02:9092,bigdata03:9092',\n" +
                "  'properties.group.id' = 'testGroup1',\n" +
                "  'scan.startup.mode' = 'latest-offset',\n" +
                "  'format' = 'json'\n" +
                ")");
        //3. 通过sql语句统计结果

        tenv.executeSql("select \n" +
                "   window_start,\n" +
                "   window_end,\n" +
                "   username,\n" +
                "   count(1) zongNum,\n" +
                "   sum(price) totalMoney \n" +
                "   from table(TUMBLE(TABLE table1, DESCRIPTOR(event_time), INTERVAL '60' second))\n" +
                "group by window_start,window_end,username").print();
        //4. sink-数据输出



        //5. execute-执行
        env.execute();
    }
}

processTime

复制代码
package com.bigdata.day08;


import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;


public class _03_flinkSql_processTime_tumble {
    /**
     * process + 滚动窗口60秒
     * 
     * 数据格式
     * {"username":"zs","price":20}
     * {"username":"lisi","price":15}
     * {"username":"lisi","price":20}
     * {"username":"zs","price":20}
     * {"username":"zs","price":20}
     * {"username":"zs","price":20}
     * {"username":"zs","price":20}
     */

    public static void main(String[] args) throws Exception {

        //1. env-准备环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

        //2. 创建表
        tenv.executeSql("CREATE TABLE table1 (\n" +
                "  `username` String,\n" +
                "  `price` int,\n" +
                "  `event_time` as proctime()\n" +
                ") WITH (\n" +
                "  'connector' = 'kafka',\n" +
                "  'topic' = 'topic1',\n" +
                "  'properties.bootstrap.servers' = 'bigdata01:9092,bigdata02:9092,bigdata03:9092',\n" +
                "  'properties.group.id' = 'testGroup1',\n" +
                "  'scan.startup.mode' = 'latest-offset',\n" +
                "  'format' = 'json'\n" +
                ")");
        //3. 通过sql语句统计结果

        tenv.executeSql("select \n" +
                "   window_start,\n" +
                "   window_end,\n" +
                "   username,\n" +
                "   count(1) zongNum,\n" +
                "   sum(price) totalMoney \n" +
                "   from table(TUMBLE(TABLE table1, DESCRIPTOR(event_time), INTERVAL '60' second))\n" +
                "group by window_start,window_end,username").print();
        //4. sink-数据输出



        //5. execute-执行
        env.execute();
    }
}
相关推荐
Dxy12393102161 小时前
别再让 ES 把你拖垮!5 个实战技巧让搜索性能提升 10 倍
大数据·elasticsearch·搜索引擎
2501_943695332 小时前
大专市场调查与统计分析专业,怎么辨别企业招聘的“画饼”岗位?
大数据
七夜zippoe2 小时前
CANN Runtime跨进程通信 共享设备上下文的IPC实现
大数据·cann
威胁猎人2 小时前
【黑产大数据】2025年全球电商业务欺诈风险研究报告
大数据
L543414463 小时前
告别代码堆砌匠厂架构让你的系统吞吐量翻倍提升
大数据·人工智能·架构·自动化·rpa
证榜样呀3 小时前
2026 大专计算机专业必考证书推荐什么
大数据·前端
LLWZAI3 小时前
让朱雀AI检测无法判断的AI公众号文章,当创作者开始与算法「躲猫猫」
大数据·人工智能·深度学习
SickeyLee3 小时前
产品经理案例分析(五):电商产品后台设计:撑起前台体验的 “隐形支柱”
大数据
callJJ4 小时前
Spring AI 文本聊天模型完全指南:ChatModel 与 ChatClient
java·大数据·人工智能·spring·spring ai·聊天模型