flinksql的滚动窗口实现

滚动窗口在flinksql中是TUMBLE

eventTime

复制代码
package com.bigdata.day08;


import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;


public class _01_flinkSql_eventTime_tumble {
    /**
     * eventTime + 滚动窗口 60秒 + 3秒的水印
     * 
     * 
     * 数据格式
     * {"username":"zs","price":20,"event_time":"2023-07-18 12:12:04"}
     * {"username":"zs","price":20,"event_time":"2023-07-18 12:13:00"}
     * {"username":"zs","price":20,"event_time":"2023-07-18 12:13:03"}
     * {"username":"zs","price":20,"event_time":"2023-07-18 12:14:03"}
     */

    public static void main(String[] args) throws Exception {

        //1. env-准备环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

        //2. 创建表
        tenv.executeSql("CREATE TABLE table1 (\n" +
                "  `username` String,\n" +
                "  `price` int,\n" +
                "  `event_time` TIMESTAMP(3),\n" +
                "   watermark for event_time as event_time - interval '3' second\n" +
                ") WITH (\n" +
                "  'connector' = 'kafka',\n" +
                "  'topic' = 'topic1',\n" +
                "  'properties.bootstrap.servers' = 'bigdata01:9092,bigdata02:9092,bigdata03:9092',\n" +
                "  'properties.group.id' = 'testGroup1',\n" +
                "  'scan.startup.mode' = 'latest-offset',\n" +
                "  'format' = 'json'\n" +
                ")");
        //3. 通过sql语句统计结果

        tenv.executeSql("select \n" +
                "   window_start,\n" +
                "   window_end,\n" +
                "   username,\n" +
                "   count(1) zongNum,\n" +
                "   sum(price) totalMoney \n" +
                "   from table(TUMBLE(TABLE table1, DESCRIPTOR(event_time), INTERVAL '60' second))\n" +
                "group by window_start,window_end,username").print();
        //4. sink-数据输出



        //5. execute-执行
        env.execute();
    }
}

processTime

复制代码
package com.bigdata.day08;


import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;


public class _03_flinkSql_processTime_tumble {
    /**
     * process + 滚动窗口60秒
     * 
     * 数据格式
     * {"username":"zs","price":20}
     * {"username":"lisi","price":15}
     * {"username":"lisi","price":20}
     * {"username":"zs","price":20}
     * {"username":"zs","price":20}
     * {"username":"zs","price":20}
     * {"username":"zs","price":20}
     */

    public static void main(String[] args) throws Exception {

        //1. env-准备环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

        //2. 创建表
        tenv.executeSql("CREATE TABLE table1 (\n" +
                "  `username` String,\n" +
                "  `price` int,\n" +
                "  `event_time` as proctime()\n" +
                ") WITH (\n" +
                "  'connector' = 'kafka',\n" +
                "  'topic' = 'topic1',\n" +
                "  'properties.bootstrap.servers' = 'bigdata01:9092,bigdata02:9092,bigdata03:9092',\n" +
                "  'properties.group.id' = 'testGroup1',\n" +
                "  'scan.startup.mode' = 'latest-offset',\n" +
                "  'format' = 'json'\n" +
                ")");
        //3. 通过sql语句统计结果

        tenv.executeSql("select \n" +
                "   window_start,\n" +
                "   window_end,\n" +
                "   username,\n" +
                "   count(1) zongNum,\n" +
                "   sum(price) totalMoney \n" +
                "   from table(TUMBLE(TABLE table1, DESCRIPTOR(event_time), INTERVAL '60' second))\n" +
                "group by window_start,window_end,username").print();
        //4. sink-数据输出



        //5. execute-执行
        env.execute();
    }
}
相关推荐
望获linux1 小时前
智能清洁机器人中的实时操作系统应用研究
大数据·linux·服务器·人工智能·机器人·操作系统
三个蔡3 小时前
Java求职者面试:从Spring Boot到微服务的技术深度探索
java·大数据·spring boot·微服务·kubernetes
Lilith的AI学习日记5 小时前
AI提示词(Prompt)终极指南:从入门到精通(附实战案例)
大数据·人工智能·prompt·aigc·deepseek
白鲸开源6 小时前
任务运维、循环任务死锁.....DolphinScheduler任务配置经验分享
大数据
小钊(求职中)7 小时前
ElasticSearch从入门到精通-覆盖DSL操作和Java实战
java·大数据·elasticsearch·搜索引擎·全文检索
西电研梦8 小时前
稳扎稳打,25西电生命科学技术学院(考研录取情况)
大数据·考研·生物医学工程·西安电子科技大学
ICT_SOLIDWORKS8 小时前
智诚科技苏州SOLIDWORKS授权代理商的卓越之选
大数据·人工智能·科技·软件工程
24k小善9 小时前
FlinkUpsertKafka深度解析
java·大数据·flink·云计算
caihuayuan410 小时前
【docker&redis】用docker容器运行单机redis
java·大数据·sql·spring·课程设计
Gvemis⁹10 小时前
Spark总结
大数据·分布式·spark