机器学习7_支持向量机_兵王问题

兵王问题描述

用SVM解决问题

国际象棋的规则:

兵:第一次向前可以走一格或两格,以后每次只能向前走一格,不能后退。

王:王被将死即告负。每次只能走一格。

兵王问题:

棋局上,黑方只剩一个王,白方剩一个兵,一个王

结局有两种可能:

  • 白方将死黑方,白方获胜。
  • 和棋

国际象棋详细规则:

【兵的升变】:兵走至对方的底线,可以升变为除王以外的任意棋子。

【逼和】:一方的王未被将军,但移动到任意的地方都会被对方将死,则此时是和棋。

判断兵王问题

可以在UCI MACHINE LEARNING网站上下载数据集,文件名------krkopt.data

这个文件的每一行,就是一个训练样本

首先给出三个字棋子的坐标,例如,第一行,a,1,b,3,c,2,draw。表示黑方的王在a1的位置,白方的王在b3的位置,白方的兵在c2的位置,这时,黑方的王处于无路可走的状态,是和棋,那么这一行最后一个单词是标签做中文,意思是和棋。

例如下面,如d,1,e,3,f,1,six。意思是如果这三个子处于这样的位置,白方最多六步就能将死黑方。

在这里,我们用支持向量机处理这个问题。

把【和棋】当作一类设定

把【其他标签(one到fifteen)】当作另一类设定

在这个数据集中,总样本个数为28,056个,其中正样本 ,和棋个数为2,796个,其他都是负样本,也就是负样本 的集合个数为25,260个。

用支持向量机程序进行训练

使用LIBSVM工具包 下载的网址


兵王问题程序设计

第一步:对数据的预处理

  • 总样本数:28,056,其中正样本2,796,负样本25,260。
  • 随机取5,000个样本训练,其余测试。

对训练样本归一化

在训练样本上,求出每个维度的均值和方差,在训练和测试样本上同时归一化。

训练样本归一化(Normalization Of Training Data):是构建机器学习分类时常用的技术,它可以将输入特征每个维度限定在一个固定的范围内,从而减少不同维度由于动态范围不同导致的训练误差。

第二步:设置支持向量机的各种参数

目标函数:

这里用到-s 0,S=1~4可以查询LIBSVM工具包和其他资料加以了解。

核函数

LIBSVM支持的几个核函数,如下:

支持向量机的优化问题如下:

最大化:

限制条件:

(1)

(2)

可以看到,对于n个训练样本,我们知道它是排列出来的矩阵:

i和j=1~N

相关推荐
Y1nhl1 小时前
Pyspark学习一:概述
数据库·人工智能·深度学习·学习·spark·pyspark·大数据技术
简简单单做算法3 小时前
基于mediapipe深度学习和限定半径最近邻分类树算法的人体摔倒检测系统python源码
人工智能·python·深度学习·算法·分类·mediapipe·限定半径最近邻分类树
就决定是你啦!4 小时前
机器学习 第一章 绪论
人工智能·深度学习·机器学习
有个人神神叨叨6 小时前
OpenAI发布的《Addendum to GPT-4o System Card: Native image generation》文件的详尽笔记
人工智能·笔记
林九生6 小时前
【Python】Browser-Use:让 AI 替你掌控浏览器,开启智能自动化新时代!
人工智能·python·自动化
liuyunshengsir7 小时前
AI Agent 实战:搭建个人在线旅游助手
人工智能·旅游
Shawn_Shawn7 小时前
大模型微调介绍
人工智能
TiAmo zhang7 小时前
DeepSeek-R1 模型现已在亚马逊云科技上提供
人工智能·云计算·aws
liruiqiang057 小时前
循环神经网络 - 简单循环网络
人工智能·rnn·深度学习·神经网络·机器学习
Erica_zhase7 小时前
GPT-4o推出的原生图像生成功能升级后有点东西!
人工智能