机器学习7_支持向量机_兵王问题

兵王问题描述

用SVM解决问题

国际象棋的规则:

兵:第一次向前可以走一格或两格,以后每次只能向前走一格,不能后退。

王:王被将死即告负。每次只能走一格。

兵王问题:

棋局上,黑方只剩一个王,白方剩一个兵,一个王

结局有两种可能:

  • 白方将死黑方,白方获胜。
  • 和棋

国际象棋详细规则:

【兵的升变】:兵走至对方的底线,可以升变为除王以外的任意棋子。

【逼和】:一方的王未被将军,但移动到任意的地方都会被对方将死,则此时是和棋。

判断兵王问题

可以在UCI MACHINE LEARNING网站上下载数据集,文件名------krkopt.data

这个文件的每一行,就是一个训练样本

首先给出三个字棋子的坐标,例如,第一行,a,1,b,3,c,2,draw。表示黑方的王在a1的位置,白方的王在b3的位置,白方的兵在c2的位置,这时,黑方的王处于无路可走的状态,是和棋,那么这一行最后一个单词是标签做中文,意思是和棋。

例如下面,如d,1,e,3,f,1,six。意思是如果这三个子处于这样的位置,白方最多六步就能将死黑方。

在这里,我们用支持向量机处理这个问题。

把【和棋】当作一类设定

把【其他标签(one到fifteen)】当作另一类设定

在这个数据集中,总样本个数为28,056个,其中正样本 ,和棋个数为2,796个,其他都是负样本,也就是负样本 的集合个数为25,260个。

用支持向量机程序进行训练

使用LIBSVM工具包 下载的网址


兵王问题程序设计

第一步:对数据的预处理

  • 总样本数:28,056,其中正样本2,796,负样本25,260。
  • 随机取5,000个样本训练,其余测试。

对训练样本归一化

在训练样本上,求出每个维度的均值和方差,在训练和测试样本上同时归一化。

训练样本归一化(Normalization Of Training Data):是构建机器学习分类时常用的技术,它可以将输入特征每个维度限定在一个固定的范围内,从而减少不同维度由于动态范围不同导致的训练误差。

第二步:设置支持向量机的各种参数

目标函数:

这里用到-s 0,S=1~4可以查询LIBSVM工具包和其他资料加以了解。

核函数

LIBSVM支持的几个核函数,如下:

支持向量机的优化问题如下:

最大化:

限制条件:

(1)

(2)

可以看到,对于n个训练样本,我们知道它是排列出来的矩阵:

i和j=1~N

相关推荐
zhaodiandiandian6 小时前
AI智能体重构产业生态,从效率革命到体验升级
人工智能·microsoft
weixin_409383126 小时前
强化lora训练 这次好点 下次在训练数据增加正常对话
人工智能·深度学习·机器学习·qwen
喜欢吃豆6 小时前
大语言模型混合专家(MoE)架构深度技术综述
人工智能·语言模型·架构·moe
老蒋新思维6 小时前
创客匠人:当知识IP遇上系统化AI,变现效率如何实现阶跃式突破?
大数据·网络·人工智能·网络协议·tcp/ip·重构·创客匠人
有一个好名字6 小时前
Spring AI 工具调用(Tool Calling):解锁智能应用新能力
java·人工智能·spring
Das16 小时前
【计算机视觉】07_几何变换
人工智能·计算机视觉
却道天凉_好个秋6 小时前
OpenCV(四十六):OBR特征检测
人工智能·opencv·计算机视觉
JosieBook6 小时前
【大模型】用 AI Ping 免费体验 GLM-4.7 与 MiniMax M2.1:从配置到实战的完整教程
数据库·人工智能·redis
deephub6 小时前
Anthropic 开源 Bloom:基于 LLM 的自动化行为评估框架
人工智能·python·自动化·大语言模型·行为评估
十铭忘6 小时前
动作识别9——TSN训练实验
人工智能·深度学习·机器学习