机器学习7_支持向量机_兵王问题

兵王问题描述

用SVM解决问题

国际象棋的规则:

兵:第一次向前可以走一格或两格,以后每次只能向前走一格,不能后退。

王:王被将死即告负。每次只能走一格。

兵王问题:

棋局上,黑方只剩一个王,白方剩一个兵,一个王

结局有两种可能:

  • 白方将死黑方,白方获胜。
  • 和棋

国际象棋详细规则:

【兵的升变】:兵走至对方的底线,可以升变为除王以外的任意棋子。

【逼和】:一方的王未被将军,但移动到任意的地方都会被对方将死,则此时是和棋。

判断兵王问题

可以在UCI MACHINE LEARNING网站上下载数据集,文件名------krkopt.data

这个文件的每一行,就是一个训练样本

首先给出三个字棋子的坐标,例如,第一行,a,1,b,3,c,2,draw。表示黑方的王在a1的位置,白方的王在b3的位置,白方的兵在c2的位置,这时,黑方的王处于无路可走的状态,是和棋,那么这一行最后一个单词是标签做中文,意思是和棋。

例如下面,如d,1,e,3,f,1,six。意思是如果这三个子处于这样的位置,白方最多六步就能将死黑方。

在这里,我们用支持向量机处理这个问题。

把【和棋】当作一类设定

把【其他标签(one到fifteen)】当作另一类设定

在这个数据集中,总样本个数为28,056个,其中正样本 ,和棋个数为2,796个,其他都是负样本,也就是负样本 的集合个数为25,260个。

用支持向量机程序进行训练

使用LIBSVM工具包 下载的网址


兵王问题程序设计

第一步:对数据的预处理

  • 总样本数:28,056,其中正样本2,796,负样本25,260。
  • 随机取5,000个样本训练,其余测试。

对训练样本归一化

在训练样本上,求出每个维度的均值和方差,在训练和测试样本上同时归一化。

训练样本归一化(Normalization Of Training Data):是构建机器学习分类时常用的技术,它可以将输入特征每个维度限定在一个固定的范围内,从而减少不同维度由于动态范围不同导致的训练误差。

第二步:设置支持向量机的各种参数

目标函数:

这里用到-s 0,S=1~4可以查询LIBSVM工具包和其他资料加以了解。

核函数

LIBSVM支持的几个核函数,如下:

支持向量机的优化问题如下:

最大化:

限制条件:

(1)

(2)

可以看到,对于n个训练样本,我们知道它是排列出来的矩阵:

i和j=1~N

相关推荐
小oo呆3 小时前
【自然语言处理与大模型】模型压缩技术之量化
人工智能·自然语言处理
Magnum Lehar3 小时前
ApophisZerg游戏引擎项目目录展示
人工智能·vscode·编辑器·游戏引擎
飞桨PaddlePaddle3 小时前
Wan2.1和HunyuanVideo文生视频模型算法解析与功能体验丨前沿多模态模型开发与应用实战第六期
人工智能·算法·百度·音视频·paddlepaddle·飞桨·deepseek
绿算技术3 小时前
存储新势力:助力DeepSeek一体机
人工智能·科技·缓存·fpga开发
Y1nhl4 小时前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
胡攀峰4 小时前
第12章 微调生成模型
人工智能·大模型·llm·sft·强化学习·rlhf·指令微调
yuanlaile4 小时前
AI大模型自然语言处理能力案例演示
人工智能·ai·自然语言处理
小白白搭建4 小时前
WordPress AI 原创文章自动生成插件 24小时全自动生成SEO原创文章 | 多语言支持 | 智能配图与排版
人工智能
Jamence4 小时前
多模态大语言模型arxiv论文略读(三十九)
人工智能·语言模型·自然语言处理
ai大模型木子4 小时前
嵌入模型(Embedding Models)原理详解:从Word2Vec到BERT的技术演进
人工智能·自然语言处理·bert·embedding·word2vec·ai大模型·大模型资料