pytorch 模型下载,from torchvision.datasets.utils import download_url不能下载模型,如何代理

1. torchvision.datasets.utils.download_url的代理

找到对应的文件/root/data1/anaconda3/envs/decouple_diffusion/lib/python3.12/site-packages/torchvision/datasets/utils.py

修改前:

python 复制代码
def _get_redirect_url(url: str, max_hops: int = 3) -> str:
    initial_url = url
    headers = {"Method": "HEAD", "User-Agent": "USER_AGENT"}

    for _ in range(max_hops + 1):
        with urllib.request.urlopen(urllib.request.Request(url, headers=headers)) as response:
            if response.url == url or response.url is None:
                return url

            url = response.url
    else:
        raise RecursionError(
            f"Request to {initial_url} exceeded {max_hops} redirects. The last redirect points to {url}."
        )

修改后:

python 复制代码
def _get_redirect_url(url: str, max_hops: int = 3) -> str:
    initial_url = url
    headers = {"Method": "HEAD", "User-Agent": "USER_AGENT"}

    # 设置代理
    proxy_handler = urllib.request.ProxyHandler({
        'http': 'http://192.168.155.245:19970',
        'https': 'http://192.168.155.245:19970'  # 如果需要支持 HTTPS
    })
    opener = urllib.request.build_opener(proxy_handler)
    urllib.request.install_opener(opener)

    for _ in range(max_hops + 1):
        with urllib.request.urlopen(urllib.request.Request(url, headers=headers)) as response:
            if response.url == url or response.url is None:
                return url

            url = response.url
    else:
        raise RecursionError(
            f"Request to {initial_url} exceeded {max_hops} redirects. The last redirect points to {url}."
        )

修改点说明:

  1. ProxyHandler 配置代理:

    设置 http 和 https 的代理地址。

  2. build_opener 和 install_opener:

    使用 build_opener 构建带有代理的处理器。
    使用 install_opener 让后续的 urlopen 请求使用代理。

  3. 兼容 HTTPS 请求:

    如果目标 URL 包括 HTTPS,确保设置 https 的代理。

2. 推荐:如果不想修改安装包的内部文件,可以在程序运行最开始设置

例如运行python main.py,在main.py 主文件最开始设置:

python 复制代码
import urllib.request

# 设置代理
proxy_handler = urllib.request.ProxyHandler({
    'http': 'http://192.168.155.245:19970',
    'https': 'http://192.168.155.245:19970'  # 如果需要支持 HTTPS
})
opener = urllib.request.build_opener(proxy_handler)
urllib.request.install_opener(opener)

3. from_pretrained 的代理

python 复制代码
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}",proxies={'http': 'http://192.168.155.xxx:19970','https': 'http://192.168.155.xxx:19970'}).to(device)
相关推荐
知乎的哥廷根数学学派11 分钟前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
知乎的哥廷根数学学派43 分钟前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
知乎的哥廷根数学学派7 小时前
基于多尺度注意力机制融合连续小波变换与原型网络的滚动轴承小样本故障诊断方法(Pytorch)
网络·人工智能·pytorch·python·深度学习·算法·机器学习
A先生的AI之旅7 小时前
2025顶会TimeDRT快速解读
人工智能·pytorch·python·深度学习·机器学习
其美杰布-富贵-李9 小时前
PyTorch Lightning
人工智能·pytorch·python·training
SiYuanFeng9 小时前
pytorch常用张量构造词句表和nn.组件速查表
人工智能·pytorch·python
MistaCloud9 小时前
Pytorch深入浅出(十四)之完整的模型训练测试套路
人工智能·pytorch·python·深度学习
知乎的哥廷根数学学派9 小时前
基于物理信息嵌入与多维度约束的深度学习地基承载力智能预测与可解释性评估算法(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
<-->11 小时前
pytorch vs ray
人工智能·pytorch·python
知乎的哥廷根数学学派11 小时前
基于多尺度特征提取和注意力自适应动态路由胶囊网络的工业轴承故障诊断算法(Pytorch)
开发语言·网络·人工智能·pytorch·python·算法·机器学习