pytorch 模型下载,from torchvision.datasets.utils import download_url不能下载模型,如何代理

1. torchvision.datasets.utils.download_url的代理

找到对应的文件/root/data1/anaconda3/envs/decouple_diffusion/lib/python3.12/site-packages/torchvision/datasets/utils.py

修改前:

python 复制代码
def _get_redirect_url(url: str, max_hops: int = 3) -> str:
    initial_url = url
    headers = {"Method": "HEAD", "User-Agent": "USER_AGENT"}

    for _ in range(max_hops + 1):
        with urllib.request.urlopen(urllib.request.Request(url, headers=headers)) as response:
            if response.url == url or response.url is None:
                return url

            url = response.url
    else:
        raise RecursionError(
            f"Request to {initial_url} exceeded {max_hops} redirects. The last redirect points to {url}."
        )

修改后:

python 复制代码
def _get_redirect_url(url: str, max_hops: int = 3) -> str:
    initial_url = url
    headers = {"Method": "HEAD", "User-Agent": "USER_AGENT"}

    # 设置代理
    proxy_handler = urllib.request.ProxyHandler({
        'http': 'http://192.168.155.245:19970',
        'https': 'http://192.168.155.245:19970'  # 如果需要支持 HTTPS
    })
    opener = urllib.request.build_opener(proxy_handler)
    urllib.request.install_opener(opener)

    for _ in range(max_hops + 1):
        with urllib.request.urlopen(urllib.request.Request(url, headers=headers)) as response:
            if response.url == url or response.url is None:
                return url

            url = response.url
    else:
        raise RecursionError(
            f"Request to {initial_url} exceeded {max_hops} redirects. The last redirect points to {url}."
        )

修改点说明:

  1. ProxyHandler 配置代理:

    设置 http 和 https 的代理地址。

  2. build_opener 和 install_opener:

    使用 build_opener 构建带有代理的处理器。
    使用 install_opener 让后续的 urlopen 请求使用代理。

  3. 兼容 HTTPS 请求:

    如果目标 URL 包括 HTTPS,确保设置 https 的代理。

2. 推荐:如果不想修改安装包的内部文件,可以在程序运行最开始设置

例如运行python main.py,在main.py 主文件最开始设置:

python 复制代码
import urllib.request

# 设置代理
proxy_handler = urllib.request.ProxyHandler({
    'http': 'http://192.168.155.245:19970',
    'https': 'http://192.168.155.245:19970'  # 如果需要支持 HTTPS
})
opener = urllib.request.build_opener(proxy_handler)
urllib.request.install_opener(opener)

3. from_pretrained 的代理

python 复制代码
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}",proxies={'http': 'http://192.168.155.xxx:19970','https': 'http://192.168.155.xxx:19970'}).to(device)
相关推荐
智源社区1 小时前
PyTorch Day 首次登陆 2025 智源大会!论文征集开启
人工智能·pytorch·python·深度学习·机器学习
小白的高手之路5 小时前
Pytorch中torch.nn的学习
人工智能·pytorch·python·深度学习·神经网络·学习·机器学习
Y1nhl6 小时前
搜广推校招面经六十二
人工智能·pytorch·python·算法·机器学习·推荐算法·搜索算法
云梦之上8 小时前
视觉风格提示词:Visual Style Prompting with Swapping Self-Attention(风格迁移)
pytorch·python·计算机视觉·ai作画·prompt
溯源0068 小时前
pytorch中不同的mask方法:masked_fill, masked_select, masked_scatter
人工智能·pytorch·python
AI视觉网奇11 小时前
最小二乘求解器lstsq,处理带权重和L2正则的线性回归
pytorch·python·线性回归
taoqick17 小时前
PyTorch DDP流程和SyncBN、ShuffleBN
人工智能·pytorch·python
小小面试官1 天前
DeepSeek详解:探索下一代语言模型
人工智能·pytorch·知识图谱·位置编码·多头注意力·deepseek·核心功能
船长@Quant1 天前
VectorBT:使用PyTorch+LSTM训练和回测股票模型 进阶三
pytorch·python·深度学习·lstm·量化策略·sklearn·量化回测
小白的高手之路1 天前
Pytorch中DataLoader的介绍
人工智能·pytorch·python·深度学习·机器学习