数据结构-堆

什么是堆

堆是一种满足以下条件的树:

堆中的每一个节点值都大于等于(或小于等于)子树中所有节点的值。或者说,任意一个节点的值都大于等于(或小于等于)所有子节点的值。

大家可以把堆(最大堆)理解为一个公司,这个公司很公平,谁能力强谁就当老大,不存在弱的人当老大,老大手底下的人一定不会比他强。这样有助于理解后续堆的操作。

!!!特别提示:

  • 很多博客说堆是完全二叉树,其实并非如此,堆不一定是完全二叉树,只是为了方便存储和索引,我们通常用完全二叉树的形式来表示堆,事实上,广为人知的斐波那契堆和二项堆就不是完全二叉树,它们甚至都不是二叉树。
  • 二叉 )堆是一个数组,它可以被看成是一个 近似的完全二叉树。------《算法导论》第三版

大家可以尝试判断下面给出的图是否是堆?

第 1 个和第 2 个是堆。第 1 个是最大堆,每个节点都比子树中所有节点大。第 2 个是最小堆,每个节点都比子树中所有节点小。

第 3 个不是,第三个中,根结点 1 比 2 和 15 小,而 15 却比 3 大,19 比 5 大,不满足堆的性质。

堆的用途

当我们只关心所有数据中的最大值或者最小值,存在多次获取最大值或者最小值,多次插入或删除数据时,就可以使用堆。

有小伙伴可能会想到用有序数组,初始化一个有序数组时间复杂度是 O(nlog(n)),查找最大值或者最小值时间复杂度都是 O(1),但是,涉及到更新(插入或删除)数据时,时间复杂度为 O(n),即使是使用复杂度为 O(log(n)) 的二分法找到要插入或者删除的数据,在移动数据时也需要 O(n) 的时间复杂度。

相对于有序数组而言,堆的主要优势在于插入和删除数据效率较高。 因为堆是基于完全二叉树实现的,所以在插入和删除数据时,只需要在二叉树中上下移动节点,时间复杂度为 O(log(n)),相比有序数组的 O(n),效率更高。

不过,需要注意的是:Heap 初始化的时间复杂度为 O(n),而非O(nlogn)

堆的分类

堆分为 最大堆最小堆。二者的区别在于节点的排序方式。

  • 最大堆:堆中的每一个节点的值都大于等于子树中所有节点的值
  • 最小堆:堆中的每一个节点的值都小于等于子树中所有节点的值

如下图所示,图 1 是最大堆,图 2 是最小堆

堆的存储

之前介绍树的时候说过,由于完全二叉树的优秀性质,利用数组存储二叉树即节省空间,又方便索引(若根结点的序号为 1,那么对于树中任意节点 i,其左子节点序号为 2*i,右子节点序号为 2*i+1)。

为了方便存储和索引,(二叉)堆可以用完全二叉树的形式进行存储。存储的方式如下图所示:

堆的操作

堆的更新操作主要包括两种 : 插入元素删除堆顶元素。操作过程需要着重掌握和理解。

在进入正题之前,再重申一遍,堆是一个公平的公司,有能力的人自然会走到与他能力所匹配的位置

插入元素

插入元素,作为一个新入职的员工,初来乍到,这个员工需要从基层做起

1.将要插入的元素放到最后

堆-插入元素-1

有能力的人会逐渐升职加薪,是金子总会发光的!!!

2.从底向上,如果父结点比该元素小,则该节点和父结点交换,直到无法交换

堆-插入元素2

堆-插入元素3

删除堆顶元素

根据堆的性质可知,最大堆的堆顶元素为所有元素中最大的,最小堆的堆顶元素是所有元素中最小的。当我们需要多次查找最大元素或者最小元素的时候,可以利用堆来实现。

删除堆顶元素后,为了保持堆的性质,需要对堆的结构进行调整,我们将这个过程称之为"堆化",堆化的方法分为两种:

  • 一种是自底向上的堆化,上述的插入元素所使用的就是自底向上的堆化,元素从最底部向上移动。
  • 另一种是自顶向下堆化,元素由最顶部向下移动。在讲解删除堆顶元素的方法时,我将阐述这两种操作的过程,大家可以体会一下二者的不同。
自底向上堆化

在堆这个公司中,会出现老大离职的现象,老大离职之后,他的位置就空出来了

首先删除堆顶元素,使得数组中下标为 1 的位置空出。

删除堆顶元素1

那么他的位置由谁来接替呢,当然是他的直接下属了,谁能力强就让谁上呗

比较根结点的左子节点和右子节点,也就是下标为 2,3 的数组元素,将较大的元素填充到根结点(下标为 1)的位置。

删除堆顶元素2

这个时候又空出一个位置了,老规矩,谁有能力谁上

一直循环比较空出位置的左右子节点,并将较大者移至空位,直到堆的最底部

删除堆顶元素3

这个时候已经完成了自底向上的堆化,没有元素可以填补空缺了,但是,我们可以看到数组中出现了"气泡",这会导致存储空间的浪费。接下来我们试试自顶向下堆化。

自顶向下堆化

自顶向下的堆化用一个词形容就是"石沉大海",那么第一件事情,就是把石头抬起来,从海面扔下去。这个石头就是堆的最后一个元素,我们将最后一个元素移动到堆顶。

删除堆顶元素4

然后开始将这个石头沉入海底,不停与左右子节点的值进行比较,和较大的子节点交换位置,直到无法交换位置。

删除堆顶元素5

删除堆顶元素6

堆的操作总结

  • 插入元素:先将元素放至数组末尾,再自底向上堆化,将末尾元素上浮
  • 删除堆顶元素:删除堆顶元素,将末尾元素放至堆顶,再自顶向下堆化,将堆顶元素下沉。也可以自底向上堆化,只是会产生"气泡",浪费存储空间。最好采用自顶向下堆化的方式。

堆排序

堆排序的过程分为两步:

  • 第一步是建堆,将一个无序的数组建立为一个堆
  • 第二步是排序,将堆顶元素取出,然后对剩下的元素进行堆化,反复迭代,直到所有元素被取出为止。

建堆

如果你已经足够了解堆化的过程,那么建堆的过程掌握起来就比较容易了。建堆的过程就是一个对所有非叶节点的自顶向下堆化过程。

首先要了解哪些是非叶节点,最后一个节点的父结点及它之前的元素,都是非叶节点。也就是说,如果节点个数为 n,那么我们需要对 n/2 到 1 的节点进行自顶向下(沉底)堆化。

具体过程如下图:

建堆1

将初始的无序数组抽象为一棵树,图中的节点个数为 6,所以 4,5,6 节点为叶节点,1,2,3 节点为非叶节点,所以要对 1-3 号节点进行自顶向下(沉底)堆化,注意,顺序是从后往前堆化,从 3 号节点开始,一直到 1 号节点。

3 号节点堆化结果:

建堆1

2 号节点堆化结果:

建堆1

1 号节点堆化结果:

建堆1

至此,数组所对应的树已经成为了一个最大堆,建堆完成!

排序

由于堆顶元素是所有元素中最大的,所以我们重复取出堆顶元素,将这个最大的堆顶元素放至数组末尾,并对剩下的元素进行堆化即可。

现在思考两个问题:

  • 删除堆顶元素后需要执行自顶向下(沉底)堆化还是自底向上(上浮)堆化?
  • 取出的堆顶元素存在哪,新建一个数组存?

先回答第一个问题,我们需要执行自顶向下(沉底)堆化,这个堆化一开始要将末尾元素移动至堆顶,这个时候末尾的位置就空出来了,由于堆中元素已经减小,这个位置不会再被使用,所以我们可以将取出的元素放在末尾。

机智的小伙伴已经发现了,这其实是做了一次交换操作,将堆顶和末尾元素调换位置,从而将取出堆顶元素和堆化的第一步(将末尾元素放至根结点位置)进行合并。

详细过程如下图所示:

取出第一个元素并堆化:

堆排序1

取出第二个元素并堆化:

堆排序2

取出第三个元素并堆化:

堆排序3

取出第四个元素并堆化:

堆排序4

取出第五个元素并堆化:

堆排序5

取出第六个元素并堆化:

堆排序6

堆排序完成!

相关推荐
风铃儿~11 分钟前
Spring AI 入门:Java 开发者的生成式 AI 实践之路
java·人工智能·spring
斯普信专业组16 分钟前
Tomcat全方位监控实施方案指南
java·tomcat
忆雾屿27 分钟前
云原生时代 Kafka 深度实践:06原理剖析与源码解读
java·后端·云原生·kafka
武昌库里写JAVA40 分钟前
iview Switch Tabs TabPane 使用提示Maximum call stack size exceeded堆栈溢出
java·开发语言·spring boot·学习·课程设计
gaoliheng0061 小时前
Redis看门狗机制
java·数据库·redis
我是唐青枫1 小时前
.NET AOT 详解
java·服务器·.net
Su米苏1 小时前
Axios请求超时重发机制
java
鑫鑫向栄2 小时前
[蓝桥杯]堆的计数
数据结构·c++·算法·蓝桥杯·动态规划
本郡主是喵3 小时前
并发编程 - go版
java·服务器·开发语言