从被动响应到主动帮助,ProActive Agent开启人机交互新篇章

在人工智能领域,我们正见证着一场革命性的变革。传统的AI助手,如ChatGPT,需要明确的指令才能执行任务。但现在,清华大学联合面壁智能等团队提出了一种全新的主动式Agent交互范式------ProActive Agent,它能够主动观察环境、预判用户需求,并在未被明确指示的情况下主动提供帮助。

安装步骤

  1. 克隆仓库并进入目录

    复制代码
    bash
    复制代码
    git clone git@github.com:thunlp/ProactiveAgent
    cd ProactiveAgent
  2. 创建并激活虚拟环境,安装依赖

    复制代码
    bash
    复制代码
    conda create -n activeagent python=3.10
    conda activate activeagent
    pip install -r requirements.txt

配置步骤

  1. 复制配置文件示例并进行修改

    复制代码
    bash
    复制代码
    cp example_config.toml private.toml

    请根据您的实际情况,修改private.toml文件中的default_completions_modelapi_keybase_url等设置。

运行Proactive Agent

  1. 进入./agent目录,按照README中的说明运行Proactive Agent。

资源链接

ProActive Agent:AI交互的新纪元

ProActive Agent不再是简单的指令执行者,而是升级成为了具有"眼力见"的智能助手。它能够主动观察环境、预判用户需求,并在未被明确指示的情况下主动帮用户排忧解难。这一新范式下的Agent实现了从"被命令"到"会思考"的质的飞跃。

技术突破:ProActive Agent的核心组件

ProActive Agent的技术原理包括三个核心组件:

  1. 环境模拟器:模拟特定环境,为智能体的交互提供沙盒条件,通过使用Activity Watcher软件采集的真实人类数据生成事件,维护环境状态。
  2. 主动智能体:预测用户意图,生成预测任务,并在用户接受后执行任务。
  3. 用户智能体:模拟用户行为并对主动智能体的任务做出反馈,通过奖励模型模拟人类标注员的判断过程。

ProActive Agent的应用场景

ProActive Agent在日常生活中有丰富的应用潜力。以下是一些预想可实现的场景:

  • 场景1:在情侣聊天中,ProActive Agent主动为女生定闹钟提醒起床。
  • 场景2:ProActive Agent主动帮助用户存储文件,并根据文件内容重命名。

ProActive Agent的实验研究

该研究通过采集不同场景下的人类活动数据构建了环境模拟器,并构建了数据集ProactiveBench。通过训练模型,获得了与人类高度一致的奖励模型,并比对了不同模型在数据集下的性能。

ProActive Agent的性能评估

在性能评估方面,研究团队提出了一套度量方式衡量奖励模型和人工标注员的一致性,包括需求遗落(MN)、静默应答(NR)、正确检测(CD)和错误检测(FD)。在这四个度量方式上进行召回率、精确度、准确度和F1分数的计算,从结果上看,所有的现有模型都在正确检测上表现良好,但对于其他指标则性能较差。现有模型倾向于接受智能体的任务,尽管可能毫无助益。相对的,该研究训练的模型性能最优,因此被选为ProActiveBench的奖励模型。

结语

ProActive Agent的提出,有望将AI从被动的工具转变为具有洞察力和主动帮助的智能协作伙伴,开启人机交互的新范式。这一技术革新不仅将改变我们与AI的互动方式,更有望为大众群体创造更加包容和便利的智能化生活环境。

感谢您的阅读,如果您对ProActive Agent或AI的未来发展有任何想法或见解,欢迎在评论区留言讨论。

BuluAI算力平台现已上线,再也不用为算力发愁嘞!详情点击官网了解吧~

相关推荐
独自归家的兔几秒前
通义千问3-VL-Plus - 文字提取(发票信息提取)
人工智能
沈浩(种子思维作者)2 分钟前
道AI能不能帮助造出黄金?
人工智能·python
2501_925317133 分钟前
[鸿蒙2025领航者闯关] 把小智AI装进「第二大脑」:从开箱到MCP智能体的全链路实战
人工智能·microsoft·harmonyos·鸿蒙2025领航者闯关·小智ai智能音箱·mcp开发
未来智慧谷3 分钟前
三部门力推“AI+消费”金融支持;SubTrack++革新模型训练;脑机接口完成首例临床
人工智能·金融
西猫雷婶4 分钟前
卷积运算效果的池化处理|最大值
人工智能·pytorch·python·深度学习·神经网络·机器学习·cnn
Guheyunyi4 分钟前
用电安全管理系统的三大系统架构
大数据·运维·人工智能·安全·架构·系统架构
啊阿狸不会拉杆6 分钟前
《数字图像处理》第 4 章 - 频率域滤波
图像处理·人工智能·算法·机器学习·数字图像处理
CNRio10 分钟前
智算基石:AI基础设施建设与国家科技战略的协同演进
人工智能·科技
白狐_79812 分钟前
Google (Flow) 完全使用指南:从入门到精通AI视频生成
人工智能·音视频
一水鉴天18 分钟前
整体设计 定稿 之27 基于整体设计总表的系统架构分析 (codebuddy)
人工智能·架构