基础算法——搜索与图论

搜索与图论

图的存储方式

2、最短路问题

最短路问题可以分为单源最短路问题和多源最短路问题,单源最短路问题就是求出从点1->n的最短距离,而多源最短路问题就是求出从点i->j的最短距离。单源最短路问题还可以分为正权边的单源最短路问题和负权边的单源最短路问题。具体算法和时间复杂度如下图:

2.1、Dijkstra算法(朴素版)


算法模板:

cpp 复制代码
#include <iostream>
#include <cstring>

using namespace std;
const int N = 510;
int g[N][N], d[N];
int n, m;
bool st[N];

int dijkstra()
{
    memset(d, 0x3f, sizeof d);
    d[1] = 0;
    for (int i = 0; i < n; i++)
    {
        int t = -1;
        for (int j = 1; j <= n; j++)
            if (!st[j] && (t == -1 || d[t] > d[j]))
                t = j;
        st[t] = true;
        for (int j = 1; j <= n; j++)
            d[j] = min(d[j], d[t] + g[t][j]);
    }
    return d[n] == 0x3f3f3f3f ? -1 : d[n];
}

int main()
{
    cin >> n >> m;
    memset(g, 0x3f, sizeof g);
    while (m--)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        g[a][b] = min(g[a][b], c);
    }
    cout << dijkstra() << endl;
    return 0;
}

2.2、Dijkstra算法(堆优化版)

下面来看看如何优化:

算法模板:

cpp 复制代码
#include <iostream>
#include <cstring>
#include <queue>

using namespace std;
typedef pair<int, int> PII;
const int N = 1.5e5+10;
int h[N], e[N], w[N], ne[N], idx;
int n, m, d[N];
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

int dijkstra()
{
    memset(d, 0x3f, sizeof d);
    d[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});
    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();
        int ver = t.second, dis = t.first;
        if (st[ver]) continue;
        st[ver] = true;
        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (d[j] > dis + w[i])
            {
                d[j] = dis + w[i];
                heap.push({d[j], j});
            }
        }
    }
    return d[n] == 0x3f3f3f3f ? -1 : d[n];
}

int main()
{
    cin >> n >> m;
    memset(h, -1, sizeof h);
    while (m--)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    cout << dijkstra() << endl;
    return 0;
}

2.3、Bellman-Ford算法


代码模板:

cpp 复制代码
#include <iostream>
#include <cstring>

using namespace std;
const int N = 510, M = 10010;
int n, m, k;
int d[N], backup[N];

struct Edge
{
    int a, b, w;
}edges[M];

void bellman_ford()
{
    memset(d, 0x3f, sizeof d);
    d[1] = 0;
    for (int i = 0; i < k; i++)
    {
        memcpy(backup, d, sizeof d);
        for (int j = 0; j < m; j++)
        {
            auto e = edges[j];
            d[e.b] = min(d[e.b], backup[e.a] + e.w);
        }
    }
}

int main()
{
    cin >> n >> m >> k;
    for (int i = 0; i < m; i++)
    {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        edges[i] = {a, b, w};
    }
    bellman_ford();
    if (d[n] > 0x3f3f3f3f / 2) cout << "impossible" << endl;
    else cout << d[n] << endl;
    return 0;
}

2.4、SPFA求最短路

代码模板:

cpp 复制代码
#include <iostream>
#include <cstring>
#include <queue>

using namespace std;
const int N = 1e5+10;
int n, m;
int h[N], e[N], w[N], ne[N], idx;
int d[N];
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

void spfa()
{
    memset(d, 0x3f, sizeof d);
    d[1] = 0;
    queue<int> q;
    q.push(1);
    st[1] = true;
    while (q.size())
    {
        auto t = q.front();
        q.pop();
        st[t] = false;
        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (d[j] > d[t] + w[i])
            {
                d[j] = d[t] + w[i];
                if (!st[j])
                {
                    st[j] = true;
                    q.push(j);
                }
            }
        }
    }
}

int main()
{
    cin >> n >> m;
    memset(h, -1, sizeof h);
    while (m--)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    spfa();
    if (d[n] == 0x3f3f3f3f) cout << "impossible" << endl;
    else cout << d[n] << endl;
    return 0;
}

2.5、SPFA判负环

cpp 复制代码
#include <iostream>
#include <cstring>
#include <queue>

using namespace std;
const int N = 2010, M = 10010;
int h[N], e[M], w[M], ne[M], idx;
int n, m;
int d[N], cnt[N];
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

bool spfa()
{
    queue<int> q;
    for (int i = 1; i <= n; i++)
    {
        q.push(i);
        st[i] = true;
    }
    while (q.size())
    {
        auto t = q.front();
        q.pop();
        st[t] = false;
        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (d[j] > d[t] + w[i])
            {
                d[j] = d[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n) return true;
                if (!st[j])
                {
                    st[j] = true;
                    q.push(j);
                }
            }
        }
    }
    return false;
}

int main()
{
    cin >> n >> m;
    memset(h, -1, sizeof h);
    while (m--)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    if (spfa()) cout << "Yes" << endl;
    else cout << "No" << endl;
    return 0;
}

2.6、Floyd算法

cpp 复制代码
#include <iostream>
#include <cstring>

using namespace std;
const int N = 210, INF = 0x3f3f3f3f;
int d[N][N];
int n, m, k;

void floyd()
{
    for (int k = 1; k <= n; k++)
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

int main()
{
    cin >> n >> m >> k;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;
    while (m--)
    {
        int a, b, c;
        cin >> a >> b >> c;
        d[a][b] = min(d[a][b], c);
    }
    floyd();
    while (k--)
    {
        int l, r;
        cin >> l >> r;
        if (d[l][r] > INF / 2) cout << "impossible" << endl;
        else cout << d[l][r] << endl;
    }
    return 0;
}
相关推荐
天乐敲代码2 小时前
JAVASE入门九脚-集合框架ArrayList,LinkedList,HashSet,TreeSet,迭代
java·开发语言·算法
十年一梦实验室2 小时前
【Eigen教程】矩阵、数组和向量类(二)
线性代数·算法·矩阵
Kent_J_Truman2 小时前
【子矩阵——优先队列】
算法
快手技术3 小时前
KwaiCoder-23BA4-v1:以 1/30 的成本训练全尺寸 SOTA 代码续写大模型
算法·机器学习·开源
一只码代码的章鱼4 小时前
粒子群算法 笔记 数学建模
笔记·算法·数学建模·逻辑回归
小小小小关同学4 小时前
【JVM】垃圾收集器详解
java·jvm·算法
圆圆滚滚小企鹅。4 小时前
刷题笔记 贪心算法-1 贪心算法理论基础
笔记·算法·leetcode·贪心算法
Kacey Huang4 小时前
YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十三天|YOLOv3实战、安装Typora
人工智能·算法·yolo·目标检测·计算机视觉
eguid_14 小时前
JavaScript图像处理,常用图像边缘检测算法简单介绍说明
javascript·图像处理·算法·计算机视觉
带多刺的玫瑰5 小时前
Leecode刷题C语言之收集所有金币可获得的最大积分
算法·深度优先