Leecode刷题C语言之骑士在棋盘上的概率

执行结果:通过

执行用时和内存消耗如下:

代码如下:

static int dirs[8][2]  = {{-2, -1}, {-2, 1}, {2, -1}, {2, 1}, {-1, -2}, {-1, 2}, {1, -2}, {1, 2}};

double knightProbability(int n, int k, int row, int column){
    double dp[200][30][30];
    memset(dp, 0, sizeof(dp));
    for (int step = 0; step <= k; step++) {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (step == 0) {
                    dp[step][i][j] = 1.0;
                } else {
                    for (int k = 0; k < 8; k++) {
                        int ni = i + dirs[k][0], nj = j + dirs[k][1];
                        if (ni >= 0 && ni < n && nj >= 0 && nj < n) {
                            dp[step][i][j] += dp[step - 1][ni][nj] / 8;
                        }
                    }
                }
            }
        }
    }
    return dp[k][row][column];
}

解题思路:

  1. 定义方向数组
    • static int dirs[8][2] = {``{-2, -1}, {-2, 1}, {2, -1}, {2, 1}, {-1, -2}, {-1, 2}, {1, -2}, {1, 2}};
    • 这个数组定义了骑士每步可以移动的八个方向,分别是向上下左右以及四个对角线方向各移动两格和一格的组合。
  2. 函数定义
    • double knightProbability(int n, int k, int row, int column)
    • 这个函数接受四个参数:棋盘的大小n(假设棋盘是n x n的正方形),步数k,以及初始位置(row, column)
  3. 动态规划数组初始化
    • double dp[200][30][30];
    • memset(dp, 0, sizeof(dp));
    • 定义一个三维动态规划数组dp来存储每一步从每一个位置移动到其他位置的概率。数组的大小是根据题目限制预设的(假设棋盘大小不超过200x200)。
  4. 初始化基础情况
    • step == 0时,即骑士没有移动,位于初始位置(i, j)的概率是1.0。
    • dp[step][i][j] = 1.0;
  5. 状态转移
    • 对于每一步step(从1到k),遍历棋盘上的每一个位置(i, j)
    • 对于每一个位置,计算从上一个步数step-1的八个可能的前一个位置(ni, nj)移动到当前位置(i, j)的概率。
    • 由于骑士每步有八个等可能的移动方向,所以每个前一个位置(ni, nj)对当前位置(i, j)的贡献是dp[step - 1][ni][nj] / 8
    • 只有在(ni, nj)是有效位置(即在棋盘范围内)时,才计算这个贡献。
  6. 返回结果
    • 最后返回dp[k][row][column],即经过k步后,骑士位于(row, column)位置的概率。

总结来说,这段代码通过动态规划的方式,计算了骑士在给定步数内从初始位置移动到目标位置的概率。每一步都考虑了骑士从上一个位置通过八个方向移动到当前位置的所有可能性,并将这些可能性累加起来,最终得到目标位置的概率。

相关推荐
楼台的春风30 分钟前
【MCU驱动开发概述】
c语言·驱动开发·单片机·嵌入式硬件·mcu·自动驾驶·嵌入式
黑子哥呢?37 分钟前
安装Bash completion解决tab不能补全问题
开发语言·bash
青龙小码农42 分钟前
yum报错:bash: /usr/bin/yum: /usr/bin/python: 坏的解释器:没有那个文件或目录
开发语言·python·bash·liunx
大数据追光猿1 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Dream it possible!1 小时前
LeetCode 热题 100_在排序数组中查找元素的第一个和最后一个位置(65_34_中等_C++)(二分查找)(一次二分查找+挨个搜索;两次二分查找)
c++·算法·leetcode
夏末秋也凉1 小时前
力扣-回溯-46 全排列
数据结构·算法·leetcode
南宫生1 小时前
力扣每日一题【算法学习day.132】
java·学习·算法·leetcode
柠石榴1 小时前
【练习】【回溯No.1】力扣 77. 组合
c++·算法·leetcode·回溯
Leuanghing1 小时前
【Leetcode】11. 盛最多水的容器
python·算法·leetcode
qy发大财1 小时前
加油站(力扣134)
算法·leetcode·职场和发展