Leecode刷题C语言之骑士在棋盘上的概率

执行结果:通过

执行用时和内存消耗如下:

代码如下:

复制代码
static int dirs[8][2]  = {{-2, -1}, {-2, 1}, {2, -1}, {2, 1}, {-1, -2}, {-1, 2}, {1, -2}, {1, 2}};

double knightProbability(int n, int k, int row, int column){
    double dp[200][30][30];
    memset(dp, 0, sizeof(dp));
    for (int step = 0; step <= k; step++) {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (step == 0) {
                    dp[step][i][j] = 1.0;
                } else {
                    for (int k = 0; k < 8; k++) {
                        int ni = i + dirs[k][0], nj = j + dirs[k][1];
                        if (ni >= 0 && ni < n && nj >= 0 && nj < n) {
                            dp[step][i][j] += dp[step - 1][ni][nj] / 8;
                        }
                    }
                }
            }
        }
    }
    return dp[k][row][column];
}

解题思路:

  1. 定义方向数组
    • static int dirs[8][2] = {``{-2, -1}, {-2, 1}, {2, -1}, {2, 1}, {-1, -2}, {-1, 2}, {1, -2}, {1, 2}};
    • 这个数组定义了骑士每步可以移动的八个方向,分别是向上下左右以及四个对角线方向各移动两格和一格的组合。
  2. 函数定义
    • double knightProbability(int n, int k, int row, int column)
    • 这个函数接受四个参数:棋盘的大小n(假设棋盘是n x n的正方形),步数k,以及初始位置(row, column)
  3. 动态规划数组初始化
    • double dp[200][30][30];
    • memset(dp, 0, sizeof(dp));
    • 定义一个三维动态规划数组dp来存储每一步从每一个位置移动到其他位置的概率。数组的大小是根据题目限制预设的(假设棋盘大小不超过200x200)。
  4. 初始化基础情况
    • step == 0时,即骑士没有移动,位于初始位置(i, j)的概率是1.0。
    • dp[step][i][j] = 1.0;
  5. 状态转移
    • 对于每一步step(从1到k),遍历棋盘上的每一个位置(i, j)
    • 对于每一个位置,计算从上一个步数step-1的八个可能的前一个位置(ni, nj)移动到当前位置(i, j)的概率。
    • 由于骑士每步有八个等可能的移动方向,所以每个前一个位置(ni, nj)对当前位置(i, j)的贡献是dp[step - 1][ni][nj] / 8
    • 只有在(ni, nj)是有效位置(即在棋盘范围内)时,才计算这个贡献。
  6. 返回结果
    • 最后返回dp[k][row][column],即经过k步后,骑士位于(row, column)位置的概率。

总结来说,这段代码通过动态规划的方式,计算了骑士在给定步数内从初始位置移动到目标位置的概率。每一步都考虑了骑士从上一个位置通过八个方向移动到当前位置的所有可能性,并将这些可能性累加起来,最终得到目标位置的概率。

相关推荐
傻欣几秒前
动态规划疑惑总结
算法·动态规划
啊我不会诶11 分钟前
倍增法和ST算法 个人学习笔记&代码
笔记·学习·算法
三体世界34 分钟前
TCP传输控制层协议深入理解
linux·服务器·开发语言·网络·c++·网络协议·tcp/ip
你的冰西瓜1 小时前
C++ 中最短路算法的详细介绍
c++·算法·图论·最短路
随心点儿1 小时前
使用python 将多个docx文件合并为一个word
开发语言·python·多个word合并为一个
zstar-_1 小时前
【算法笔记】6.LeetCode-Hot100-链表专项
笔记·算法·leetcode
不学无术の码农1 小时前
《Effective Python》第十三章 测试与调试——使用 Mock 测试具有复杂依赖的代码
开发语言·python
Swift社区1 小时前
Swift 图论实战:DFS 算法解锁 LeetCode 323 连通分量个数
算法·swift·图论
tomcsdn311 小时前
SMTPman,smtp的端口号是多少全面解析配置
服务器·开发语言·php·smtp·邮件营销·域名邮箱·邮件服务器
<但凡.1 小时前
数据结构与算法之美:广义表
数据结构·c++·算法