二分查找篇——搜索旋转排序数组【LeetCode】两次二分查找

33. 搜索旋转排序数组

一、算法逻辑(逐步通顺讲解每一步思路)

✅ 1️⃣ 找到旋转点(即最小值下标)

使用 findMin(nums) 函数(本质是偏左二分),快速定位旋转数组的最小值下标 i,将整个数组分为两段:

  • 第一段是 nums[0:i]:比 nums[-1] 大;

  • 第二段是 nums[i:]:比 nums[-1] 小或等于。

该函数核心已分析过,详情参考

二分查找篇------寻找旋转排序数组中的最小值【LeetCode】-CSDN博客

不再赘述,其返回的是最小值的下标 i


✅ 2️⃣ 判断目标所在区间

通过比较 targetnums[-1] 的大小,判断它应该位于哪一段中:

  • 如果 target > nums[-1],说明目标值在旋转点左侧,即第一段(原数组前半部分);

  • 否则,说明目标值在旋转点右侧,即第二段。


✅ 3️⃣ 二分查找目标下标

调用自定义的 lower_bound(nums, left, right, target) 方法,在对应区间内进行精确查找目标值的下标

lower_bound 核心逻辑:
  • 搜索范围是 开区间 (left, right) ,所以初始边界可能设为 -1n

  • 使用循环不变量:

    • nums[left] < target

    • nums[right] >= target

  • nums[mid] >= target,说明目标可能在左侧或就是 mid,更新 right = mid

  • 否则目标一定在右侧,更新 left = mid

  • 最终判断 nums[right] == target 成立时返回下标,否则返回 -1 表示未找到。


二、核心点总结

✅ 核心思想是:

将旋转排序数组分成两个单调段,然后在正确的一段中用二分查找目标。

✅ 技巧亮点包括:

  • 利用 nums[-1] 作为分界判断依据;

  • lower_bound 使用开区间写法,统一且干净;

  • 充分复用了"二分搜索 + 旋转点定位"的组合模板。

✅ 本题与 LeetCode 153 题(找最小)和 33 题(搜索目标)关联紧密,适合放在一起练习和理解。

python 复制代码
class Solution:
    # 153. 寻找旋转排序数组中的最小值(返回的是下标)
    def findMin(self, nums: List[int]) -> int:
        left, right = -1, len(nums) - 1  # 开区间 (-1, n-1)
        while left + 1 < right:  # 开区间不为空
            mid = (left + right) // 2
            if nums[mid] < nums[-1]:
                right = mid
            else:
                left = mid
        return right

    # 有序数组中找 target 的下标
    def lower_bound(self, nums: List[int], left: int, right: int, target: int) -> int:
        while left + 1 < right:  # 开区间不为空
            mid = (left + right) // 2
            # 循环不变量:
            # nums[right] >= target
            # nums[left] < target
            if nums[mid] >= target:
                right = mid  # 范围缩小到 (left, mid)
            else:
                left = mid  # 范围缩小到 (mid, right)
        return right if nums[right] == target else -1

    def search(self, nums: List[int], target: int) -> int:
        i = self.findMin(nums)
        if target > nums[-1]:  # target 在第一段
            return self.lower_bound(nums, -1, i, target)  # 开区间 (-1, i)
        # target 在第二段
        return self.lower_bound(nums, i - 1, len(nums), target)  # 开区间 (i-1, n)

三、时间复杂度分析

  • findMin 查找旋转点:O(log n)

  • lower_bound 二分搜索:O(log n)

✅ 整体时间复杂度为:O(log n)


四、空间复杂度分析

  • 使用常数个变量;

  • 无递归,无额外数组结构。

✅ 空间复杂度为:O(1)


✅ 总结一句话

本解法将旋转数组分段 + 精准定位目标值下标,结合偏左二分与逻辑清晰的 lower_bound 函数,实现了 O(log n) 时间复杂度的优雅搜索,是 LeetCode 33题的标准解法。其中的偏移下标控制和开区间技巧值得深入掌握.

相关推荐
忆~遂愿1 天前
谷歌云+Apache Airflow,数据处理自动化的强力武器
人工智能·python·深度学习·opencv·自动化·apache
禁默1 天前
机器学习基础入门(第三篇):监督学习详解与经典算法
学习·算法·机器学习
李小白661 天前
python 函数
开发语言·python
惬意小西瓜1 天前
3.java常用类知识点
java·开发语言·分类
sensen_kiss1 天前
INT305 Machine Learning 机器学习 Pt.1 导论与 KNN算法
人工智能·算法·机器学习
没书读了1 天前
考研复习-线性代数强化-向量组和方程组特征值
python·线性代数·机器学习
hqwest1 天前
QT肝8天08--主界面设计
开发语言·qt·上位机·qt开发·ui设计
席万里1 天前
使用Go做一个分布式短链系统
开发语言·分布式·golang
做运维的阿瑞1 天前
Python核心架构深度解析:从解释器原理到GIL机制全面剖析
开发语言·python·架构·系统架构