唇形同步视频生成工具:Wav2Lip

一、模型介绍

今天介绍一个唇形同步的工具-Wav2Lip;Wav2Lip是一种用于生成唇形同步(lip-sync)视频的深度学习算法,它能够根据输入的音频流自动为给定的人脸视频添加准确的口型动作。

(Paper)

Wav2Lip模型是基于生成对抗网络(GAN)构建的,它包含生成器和判别器两个主要部分。生成器负责根据输入的音频波形生成逼真的面部动画,而判别器则负责区分生成的动画与真实的面部动画 ;

其主要结构和工作原理的详细描述如下:

  1. 判别器(D_{SyncNet}):第一阶段是训练一个能够判别声音与嘴型是否同步的判别器。这个判别器的目标是提高对声音与嘴型同步性的判断能力。

  2. 生成器(编码-解码模型结构):第二阶段采用编码-解码模型结构,包括一个生成器和两个判别器。生成器尝试生成与音频同步的面部动画,而两个判别器分别负责判断生成的动画与真实动画的同步性和视觉质量。

  3. 主要模块:Wav2Lip模型包括三个主要模块:

    • Identity Encoder(身份编码器):负责对随机参考帧进行编码,以提取身份特征。
    • Speech Encoder(语音编码器):将输入语音段编码为面部动画特征。
    • Face Decoder(人脸解码器):将编码后的特征进行上采样,最终生成面部动画。

二、本地部署

下面我们就在本地或者魔塔平台上部署一下这个模型,这里我选择在魔塔上部署该项目:

2.1 创建conda虚拟环境

根据github上的README,我们在硬件上需要有Nvidia的显卡,同时需要在python=3.6的环境下运行,之前博文有详细介绍如何在魔塔上安装miniconda以及创建虚拟环境,这里就不再赘述了,这里我们就创建一个名为wav2lip的虚拟环境;

2.2 安装依赖环境

bash 复制代码
git clone https://github.com/Rudrabha/Wav2Lip.git

cd Wav2Lip

注:需要注意的一点是,在安装依赖环境之前,将requirements.txt文件中的

复制代码
opencv-contrib-python>=4.2.0.34改为opencv-contrib-python==4.2.0.34
bash 复制代码
# 安装依赖环境
pip install -r requirements.txt
# 下载模型权重
git clone https://www.modelscope.cn/GYMaster/Wav2lip.git

2.3 运行

bash 复制代码
python inference.py --checkpoint_path <ckpt> --face <video.mp4> --audio <an-audio-source> 

其中:

--checkpoint_path 是上面下载的模型权重的路径

--face 是需要同步口型的视频文件路径

--audio 是对应的音频文件路径

需要注意一下几点:

1、音频文件的时长不应超过视频文件的时长;

2、视频文件中必须保证每一帧画面都有清晰的人脸;

2.4 Web-UI

待更新。。。

相关推荐
Zender Han8 小时前
Flutter 视频播放器——flick_video_player 介绍与使用
android·flutter·ios·音视频
max5006009 小时前
实时多模态电力交易决策系统:设计与实现
图像处理·人工智能·深度学习·算法·音视频
达讯数字16 小时前
浅谈“SVMSPro视频切片”技术应用场景
音视频·mp4·海康·大华·svmspro·视频切片
嘀咕博客18 小时前
拍我AI:PixVerse国内版,爱诗科技推出的AI视频生成平台
人工智能·科技·音视频·ai工具
嘀咕博客20 小时前
SafeEar:浙大和清华联合推出的AI音频伪造检测框架,错误率低至2.02%
人工智能·音视频·ai工具
嘀咕博客20 小时前
PixVerse -免费在线AI视频生成工具
人工智能·音视频·ai工具
悟乙己1 天前
Github | MoneyPrinterTurbo:自动化视频内容生成系统
自动化·github·音视频
wan5555cn1 天前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
AI360labs_atyun1 天前
2025世界智博会,揭幕AI触手可及的科幻生活
人工智能·ai·音视频·生活
骄傲的心别枯萎1 天前
RV1126 NO.16:通过多线程同时获取H264和H265码流
linux·c++·音视频·rv1126