12.6深度学习_模型优化和迁移_整体流程梳理

七、整体流程梳理

1. 引入使用的包

用到什么包,临时引入就可以,不用太担心。

python 复制代码
import time
import os

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10

from torchvision.models import resnet18, ResNet18_Weights
import wandb
from torch.utils.tensorboard import SummaryWriter
from sklearn.metrics import *
import matplotlib.pyplot as plt

2. 数据

python 复制代码
# 下面和以前就一样了
train_dataset = CIFAR10(
    root=datapath,
    train=True,
    download=True,
    transform=transform,
)
# 构建训练数据集
train_loader = DataLoader(
    #
    dataset=train_dataset,
    batch_size=batzh_size,
    shuffle=True,
    num_workers=2,
)

3. 模型

python 复制代码
# 再次获取resnet18原始神经网络并对齐fc层进行调整
model = resnet18(weights=None)

in_features = model.fc.in_features
# 重写FC:我们这里做的是10分类
model.fc = nn.Linear(in_features=in_features, out_features=10)

# 需要对权重信息进行处理:要加载我们训练之后最新的权重文件
weights_default = torch.load(weightpath)
weights_default.pop("fc.weight")
weights_default.pop("fc.bias")

# 把权重参数进行同步
new_state_dict = model.state_dict()
weights_default_process = {
    k: v for k, v in weights_default.items() if k in new_state_dict
}
new_state_dict.update(weights_default_process)
model.load_state_dict(new_state_dict)
model.to(device)

4. 训练

4.1 数据增强

为了防止过拟合,增加模型的泛化能力,我们会数据增强

python 复制代码
transform = transforms.Compose(
    [
        transforms.RandomRotation(45),  # 随机旋转,-45到45度之间随机选
        transforms.RandomCrop(32, padding=4),  # 随机裁剪
        transforms.RandomHorizontalFlip(p=0.5),  # 随机水平翻转 选择一个概率概率
        transforms.RandomVerticalFlip(p=0.5),  # 随机垂直翻转
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2471, 0.2435, 0.2616)),
    ]
)

transformtest = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2471, 0.2435, 0.2616)),
    ]
)

4.2 开始训练

python 复制代码
    # 损失函数和优化器
    loss_fn = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=lr)
    
    for epoch in range(epochs):
        # 开始时间
        start = time.time()
        # 总的损失值
        total_loss = 0.0
        # 样本数量:最后一次样本数量不是128
        samp_num = 0
        # 总的预测正确的分类
        correct = 0

        model.train()
        for i, (x, y) in enumerate(train_loader):
            x, y = x.to(device), y.to(device)
            # 累加样本数量
            samp_num += len(y)
            out = model(x)
            # 预测正确的样本数量
            correct += out.argmax(dim=1).eq(y).sum().item()
            loss = loss_fn(out, y)
            # 损失率累加
            total_loss += loss.item() * len(y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if i % 100 == 0:
                img_grid = torchvision.utils.make_grid(x)
                write1.add_image(
                    f"r_m_{epoch}_{i}", img_grid, epoch * len(train_loader) + i
                )

        print(
            "批次:%d 损失率:%.4f 准确率:%.4f 耗时:%.4f"
            % (epoch, total_loss / samp_num, correct / samp_num, time.time() - start)
        )
        # log metrics to wandb
        wandb.log({"acc": correct / samp_num, "loss": total_loss / samp_num})

4.3 保存模型

python 复制代码
torch.save(model.state_dict(), weightpath)

4.4 训练过程可视化

wandb

python 复制代码
 # 训练过程可视化
    wandb.init(
        project="my-qianyi-project",
        config={
            "learning_rate": lr,
            "architecture": "CNN",
            "dataset": "CIFAR-100",
            "batch_size": batzh_size,
            "epochs": epochs,
        },
    )

tensorboard

python 复制代码
write1 = SummaryWriter(log_dir=log_dir)
# 保存模型结构到tensorboard
write1.add_graph(model, input_to_model=torch.randn(1, 3, 32, 32).to(device=device))

5. 验证阶段

5.1 数据验证

python 复制代码
weights_default = torch.load(weightpath)
    # 再次获取resnet18原始神经网络并对齐fc层进行调整
    model = resnet18(pretrained=False)
    in_features = model.fc.in_features
    # 重写FC:我们这里做的是10分类
    model.fc = nn.Linear(in_features=in_features, out_features=10)
    model.load_state_dict(weights_default)
    model.to(device)
    model.eval()
    samp_num = 0
    correct = 0
    data2csv = np.empty(shape=(0, 13))
    for x, y in vaild_loader:
        x = x.to(device)
        y = y.to(device)
        # 累加样本数量
        samp_num += len(y)
        # 模型运算
        out = model(x)
        # 数组的合并
        data2csv = np.concatenate((data2csv, outdata_softmax), axis=0)
        # 预测正确的样本数量
        correct += out.argmax(dim=1).eq(y).sum().item()

    print("准确率:%.4f" % (correct / samp_num))

5.2 验证结果可视化

验证数据保存到Excel

python 复制代码
data2csv = np.empty(shape=(0, 13))

#数据整理
out = model(x)
outdata = out.cpu().detach()
outdata_softmax = torch.softmax(outdata, dim=1)
# 合并目标值到样本  [5, 7,9,0,1,,1,2,3,4,3,4]
outdata_softmax = np.concatenate(
    (
        # 本身预测的值
        outdata_softmax.numpy(),
        # 真正的目标值
        y.cpu().numpy().reshape(-1, 1),
        # 预测值
        outdata_softmax.argmax(dim=1).reshape(-1, 1),
        # 分类名称
        np.array([vaild_dataset.classes[i] for i in y.cpu().numpy()]).reshape(
            -1, 1
        ),
    ),
    axis=1,
)
# 数组的合并
data2csv = np.concatenate((data2csv, outdata_softmax), axis=0)

#写入CSV
columns = np.concatenate((vaild_dataset.classes, ["target", "prep", "分类"]))
pddata = pd.DataFrame(data2csv, columns=columns)
pddata.to_csv(csvpath, encoding="GB2312")

指标分析:可视化

python 复制代码
def analy():
    # 读取csv数据
    data1 = pd.read_csv(csvpath, encoding="GB2312")
    print(type(data1))
    # 整体数据分析报告
    report = classification_report(
        y_true=data1["target"].values,
        y_pred=data1["prep"].values,
    )
    print(report)
    # 准确度 Acc
    print(
        "准确度Acc:",
        accuracy_score(
            y_true=data1["target"].values,
            y_pred=data1["prep"].values,
        ),
    )
    # 精确度
    print(
        "精确度Precision:",
        precision_score(
            y_true=data1["target"].values, y_pred=data1["prep"].values, average="macro"
        ),
    )
    # 召回率
    print(
        "召回率Recall:",
        recall_score(
            # 100
            y_true=data1["target"].values,
            y_pred=data1["prep"].values,
            average="macro",
        ),
    )
    # F1 Score
    print(
        "F1 Score:",
        f1_score(
            y_true=data1["target"].values,
            y_pred=data1["prep"].values,
            average="macro",
        ),
    )
    pass


def matrix():
    # 读取csv数据
    data1 = pd.read_csv(csvpath, encoding="GB2312", index_col=0)
    confusion = confusion_matrix(
        # 0
        y_true=data1["target"].values,
        y_pred=data1["prep"].values,
        # labels=data1.columns[0:10].values,
    )
    print(confusion)
    # 绘制混淆矩阵
    plt.rcParams["font.sans-serif"] = ["SimHei"]
    plt.rcParams["axes.unicode_minus"] = False
    plt.matshow(confusion, cmap=plt.cm.Greens)
    plt.colorbar()
    for i in range(confusion.shape[0]):
        for j in range(confusion.shape[1]):
            plt.text(j, i, confusion[i, j], ha="center", va="center", color="b")
    plt.title("验证数据混淆矩阵")
    plt.xlabel("Predicted label")
    plt.xticks(range(10), data1.columns[0:10].values, rotation=45)
    plt.ylabel("True label")
    plt.yticks(range(10), data1.columns[0:10].values)
    plt.show()

6. 使用

python 复制代码
def app():
    dir = os.path.dirname(__file__)
    imgpath = os.path.join("./write", "6.png")
    # 读取图像文件 '8.png'
    img = cv2.imread(imgpath)
    # 将图像转换为灰度图
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 对灰度图进行二值化处理,采用OTSU自适应阈值方法,并反转颜色
    ret, img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
    plt.imshow(img)
    plt.show()
    # img = cv2.resize(img, (32, 32))
    img = torch.Tensor(img).unsqueeze(0)
    transform = transforms.Compose(
        [
            transforms.Resize((32, 32)),  # 调整输入图像大小为32x32
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,)),
        ]
    )
    img = transform(img).unsqueeze(0)
    # 加载我们的模型
    net = LeNet5()
    net.load_state_dict(torch.load(modelpath))
    # 预测
    outputs = net(img)
    print(outputs)
    print(outputs.argmax(axis=1))
相关推荐
周博洋K1 分钟前
SSI用量子计算来玩AI
人工智能·量子计算
IT猿手19 分钟前
2025高维多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
开发语言·人工智能·算法·机器学习·matlab·无人机·cocos2d
橙子小哥的代码世界29 分钟前
【机器学习】【KMeans聚类分析实战】用户分群聚类详解——SSE、CH 指数、SC全解析,实战电信客户分群案例
人工智能·python·机器学习·kmeans·数据科学·聚类算法·肘部法
k layc33 分钟前
【论文解读】《Training Large Language Models to Reason in a Continuous Latent Space》
人工智能·python·机器学习·语言模型·自然语言处理·大模型推理
代码猪猪傻瓜coding42 分钟前
【模块】 ASFF 模块
人工智能·深度学习
阿正的梦工坊1 小时前
Sliding Window Attention(滑动窗口注意力)解析: Pytorch实现并结合全局注意力(Global Attention )
人工智能·pytorch·python
rgb2gray1 小时前
GeoHD - 一种用于智慧城市热点探测的Python工具箱
人工智能·python·智慧城市
火车叼位1 小时前
5个Why、SWOT, 5W2H等方法论总结,让你的提示词更加精炼
人工智能
阿正的梦工坊1 小时前
PyTorch下三角矩阵生成函数torch.tril的深度解析
人工智能·pytorch·矩阵
说私域2 小时前
电商运营中私域流量的转化与变现:以开源AI智能名片2+1链动模式S2B2C商城小程序为例
人工智能·小程序·开源·流量运营