12.6深度学习_模型优化和迁移_整体流程梳理

七、整体流程梳理

1. 引入使用的包

用到什么包,临时引入就可以,不用太担心。

python 复制代码
import time
import os

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10

from torchvision.models import resnet18, ResNet18_Weights
import wandb
from torch.utils.tensorboard import SummaryWriter
from sklearn.metrics import *
import matplotlib.pyplot as plt

2. 数据

python 复制代码
# 下面和以前就一样了
train_dataset = CIFAR10(
    root=datapath,
    train=True,
    download=True,
    transform=transform,
)
# 构建训练数据集
train_loader = DataLoader(
    #
    dataset=train_dataset,
    batch_size=batzh_size,
    shuffle=True,
    num_workers=2,
)

3. 模型

python 复制代码
# 再次获取resnet18原始神经网络并对齐fc层进行调整
model = resnet18(weights=None)

in_features = model.fc.in_features
# 重写FC:我们这里做的是10分类
model.fc = nn.Linear(in_features=in_features, out_features=10)

# 需要对权重信息进行处理:要加载我们训练之后最新的权重文件
weights_default = torch.load(weightpath)
weights_default.pop("fc.weight")
weights_default.pop("fc.bias")

# 把权重参数进行同步
new_state_dict = model.state_dict()
weights_default_process = {
    k: v for k, v in weights_default.items() if k in new_state_dict
}
new_state_dict.update(weights_default_process)
model.load_state_dict(new_state_dict)
model.to(device)

4. 训练

4.1 数据增强

为了防止过拟合,增加模型的泛化能力,我们会数据增强

python 复制代码
transform = transforms.Compose(
    [
        transforms.RandomRotation(45),  # 随机旋转,-45到45度之间随机选
        transforms.RandomCrop(32, padding=4),  # 随机裁剪
        transforms.RandomHorizontalFlip(p=0.5),  # 随机水平翻转 选择一个概率概率
        transforms.RandomVerticalFlip(p=0.5),  # 随机垂直翻转
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2471, 0.2435, 0.2616)),
    ]
)

transformtest = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2471, 0.2435, 0.2616)),
    ]
)

4.2 开始训练

python 复制代码
    # 损失函数和优化器
    loss_fn = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=lr)
    
    for epoch in range(epochs):
        # 开始时间
        start = time.time()
        # 总的损失值
        total_loss = 0.0
        # 样本数量:最后一次样本数量不是128
        samp_num = 0
        # 总的预测正确的分类
        correct = 0

        model.train()
        for i, (x, y) in enumerate(train_loader):
            x, y = x.to(device), y.to(device)
            # 累加样本数量
            samp_num += len(y)
            out = model(x)
            # 预测正确的样本数量
            correct += out.argmax(dim=1).eq(y).sum().item()
            loss = loss_fn(out, y)
            # 损失率累加
            total_loss += loss.item() * len(y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if i % 100 == 0:
                img_grid = torchvision.utils.make_grid(x)
                write1.add_image(
                    f"r_m_{epoch}_{i}", img_grid, epoch * len(train_loader) + i
                )

        print(
            "批次:%d 损失率:%.4f 准确率:%.4f 耗时:%.4f"
            % (epoch, total_loss / samp_num, correct / samp_num, time.time() - start)
        )
        # log metrics to wandb
        wandb.log({"acc": correct / samp_num, "loss": total_loss / samp_num})

4.3 保存模型

python 复制代码
torch.save(model.state_dict(), weightpath)

4.4 训练过程可视化

wandb

python 复制代码
 # 训练过程可视化
    wandb.init(
        project="my-qianyi-project",
        config={
            "learning_rate": lr,
            "architecture": "CNN",
            "dataset": "CIFAR-100",
            "batch_size": batzh_size,
            "epochs": epochs,
        },
    )

tensorboard

python 复制代码
write1 = SummaryWriter(log_dir=log_dir)
# 保存模型结构到tensorboard
write1.add_graph(model, input_to_model=torch.randn(1, 3, 32, 32).to(device=device))

5. 验证阶段

5.1 数据验证

python 复制代码
weights_default = torch.load(weightpath)
    # 再次获取resnet18原始神经网络并对齐fc层进行调整
    model = resnet18(pretrained=False)
    in_features = model.fc.in_features
    # 重写FC:我们这里做的是10分类
    model.fc = nn.Linear(in_features=in_features, out_features=10)
    model.load_state_dict(weights_default)
    model.to(device)
    model.eval()
    samp_num = 0
    correct = 0
    data2csv = np.empty(shape=(0, 13))
    for x, y in vaild_loader:
        x = x.to(device)
        y = y.to(device)
        # 累加样本数量
        samp_num += len(y)
        # 模型运算
        out = model(x)
        # 数组的合并
        data2csv = np.concatenate((data2csv, outdata_softmax), axis=0)
        # 预测正确的样本数量
        correct += out.argmax(dim=1).eq(y).sum().item()

    print("准确率:%.4f" % (correct / samp_num))

5.2 验证结果可视化

验证数据保存到Excel

python 复制代码
data2csv = np.empty(shape=(0, 13))

#数据整理
out = model(x)
outdata = out.cpu().detach()
outdata_softmax = torch.softmax(outdata, dim=1)
# 合并目标值到样本  [5, 7,9,0,1,,1,2,3,4,3,4]
outdata_softmax = np.concatenate(
    (
        # 本身预测的值
        outdata_softmax.numpy(),
        # 真正的目标值
        y.cpu().numpy().reshape(-1, 1),
        # 预测值
        outdata_softmax.argmax(dim=1).reshape(-1, 1),
        # 分类名称
        np.array([vaild_dataset.classes[i] for i in y.cpu().numpy()]).reshape(
            -1, 1
        ),
    ),
    axis=1,
)
# 数组的合并
data2csv = np.concatenate((data2csv, outdata_softmax), axis=0)

#写入CSV
columns = np.concatenate((vaild_dataset.classes, ["target", "prep", "分类"]))
pddata = pd.DataFrame(data2csv, columns=columns)
pddata.to_csv(csvpath, encoding="GB2312")

指标分析:可视化

python 复制代码
def analy():
    # 读取csv数据
    data1 = pd.read_csv(csvpath, encoding="GB2312")
    print(type(data1))
    # 整体数据分析报告
    report = classification_report(
        y_true=data1["target"].values,
        y_pred=data1["prep"].values,
    )
    print(report)
    # 准确度 Acc
    print(
        "准确度Acc:",
        accuracy_score(
            y_true=data1["target"].values,
            y_pred=data1["prep"].values,
        ),
    )
    # 精确度
    print(
        "精确度Precision:",
        precision_score(
            y_true=data1["target"].values, y_pred=data1["prep"].values, average="macro"
        ),
    )
    # 召回率
    print(
        "召回率Recall:",
        recall_score(
            # 100
            y_true=data1["target"].values,
            y_pred=data1["prep"].values,
            average="macro",
        ),
    )
    # F1 Score
    print(
        "F1 Score:",
        f1_score(
            y_true=data1["target"].values,
            y_pred=data1["prep"].values,
            average="macro",
        ),
    )
    pass


def matrix():
    # 读取csv数据
    data1 = pd.read_csv(csvpath, encoding="GB2312", index_col=0)
    confusion = confusion_matrix(
        # 0
        y_true=data1["target"].values,
        y_pred=data1["prep"].values,
        # labels=data1.columns[0:10].values,
    )
    print(confusion)
    # 绘制混淆矩阵
    plt.rcParams["font.sans-serif"] = ["SimHei"]
    plt.rcParams["axes.unicode_minus"] = False
    plt.matshow(confusion, cmap=plt.cm.Greens)
    plt.colorbar()
    for i in range(confusion.shape[0]):
        for j in range(confusion.shape[1]):
            plt.text(j, i, confusion[i, j], ha="center", va="center", color="b")
    plt.title("验证数据混淆矩阵")
    plt.xlabel("Predicted label")
    plt.xticks(range(10), data1.columns[0:10].values, rotation=45)
    plt.ylabel("True label")
    plt.yticks(range(10), data1.columns[0:10].values)
    plt.show()

6. 使用

python 复制代码
def app():
    dir = os.path.dirname(__file__)
    imgpath = os.path.join("./write", "6.png")
    # 读取图像文件 '8.png'
    img = cv2.imread(imgpath)
    # 将图像转换为灰度图
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 对灰度图进行二值化处理,采用OTSU自适应阈值方法,并反转颜色
    ret, img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
    plt.imshow(img)
    plt.show()
    # img = cv2.resize(img, (32, 32))
    img = torch.Tensor(img).unsqueeze(0)
    transform = transforms.Compose(
        [
            transforms.Resize((32, 32)),  # 调整输入图像大小为32x32
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,)),
        ]
    )
    img = transform(img).unsqueeze(0)
    # 加载我们的模型
    net = LeNet5()
    net.load_state_dict(torch.load(modelpath))
    # 预测
    outputs = net(img)
    print(outputs)
    print(outputs.argmax(axis=1))
相关推荐
shuououo2 小时前
YOLOv4 核心内容笔记
人工智能·计算机视觉·目标跟踪
DO_Community5 小时前
普通服务器都能跑:深入了解 Qwen3-Next-80B-A3B-Instruct
人工智能·开源·llm·大语言模型·qwen
WWZZ20255 小时前
快速上手大模型:机器学习3(多元线性回归及梯度、向量化、正规方程)
人工智能·算法·机器学习·机器人·slam·具身感知
deephub6 小时前
深入BERT内核:用数学解密掩码语言模型的工作原理
人工智能·深度学习·语言模型·bert·transformer
PKNLP6 小时前
BERT系列模型
人工智能·深度学习·bert
兰亭妙微6 小时前
ui设计公司审美积累 | 金融人工智能与用户体验 用户界面仪表盘设计
人工智能·金融·ux
AKAMAI7 小时前
安全风暴的绝地反击 :从告警地狱到智能防护
运维·人工智能·云计算
岁月宁静7 小时前
深度定制:在 Vue 3.5 应用中集成流式 AI 写作助手的实践
前端·vue.js·人工智能
galaxylove7 小时前
Gartner发布数据安全态势管理市场指南:将功能扩展到AI的特定数据安全保护是DSPM发展方向
大数据·人工智能
格林威7 小时前
偏振相机在半导体制造的领域的应用
人工智能·深度学习·数码相机·计算机视觉·视觉检测·制造