第三章补充:泰勒公式(B站:一高数)

视频1:泰勒公式,39分钟,小白也直接上手!|高等数学

原视频:泰勒公式,39分钟,小白也直接上手!|高等数学_哔哩哔哩_bilibili

这个视频我们会从泰勒公式是怎么被发现的,有多厉害,讲到泰勒公式的具体表达式、怎么牢牢记住,最后,我们再自己动手把函数展成泰勒公式。下个视频我们串讲泰勒公式的核心考点和必胜解法。

一、泰勒公式的引入

到底什么是泰勒公式呢?如果你直接翻开教材,你会发现泰勒公式长得非常可怕,别看了,伤身体。。。👇

我们回溯到16世纪,当时的数学家们都在研究一个神奇的东西------无穷算法。他们发现,任何一个无穷小数都可以写成10和的次方。通过类比,数学家们觉得是不是也可以用无穷多的次方合成任何曲线呢?如果能做到这一点那就太好了。因为的导数和积分都很好求。

那么,上图中右侧的一串多项式和复杂的到底有多接近呢?我们一起往下看:

如果多项式只展开到的一次项,这条直线其实在0附近的逼近效果还不错,但毕竟直线不是曲线,它其他地方长得是真不像。如下图👇

那么,我们接下来展开到,这个弯曲的感觉就有点意思了。如下图👇

我们继续展开,展开到,这个多项式的曲线和在一个周期上基本重合了。如下图👇

我们再继续展开到,这个多项式和在两个周期上已经基本重合了。如下图👇

只要展开的项数足够多,这个多项式是可以在整条实数轴上和基本重合的。展开的次数越高,近似结果就越精确。这一点和无穷小数是一个道理,稍后我们还会更深刻地解释这一点。其实上图中每一个点都会有那么一点点误差,但是这个误差已经是微乎其微了。

到这里,相信大家一定非常好奇,这个的展开式到底是怎么得出来的???以及,有没有什么通式能确保随便一个复杂的都能写出这个多项式呢?下面,我们一起来见证泰勒公式的诞生!

相关推荐
我有医保我先冲23 分钟前
AI大模型与人工智能的深度融合:重构医药行业数字化转型的底层逻辑
人工智能·重构
pen-ai1 小时前
【NLP】15. NLP推理方法详解 --- 动态规划:序列标注,语法解析,共同指代
人工智能·自然语言处理·动态规划
Chaos_Wang_1 小时前
NLP高频面试题(二十九)——大模型解码常见参数解析
人工智能·自然语言处理
Acrelhuang1 小时前
8.3MW屋顶光伏+光储协同:上海汽车变速器低碳工厂的能源革命-安科瑞黄安南
大数据·数据库·人工智能·物联网·数据库开发
区块链蓝海1 小时前
沉浸式体验测评|AI Ville:我在Web3小镇“生活”了一周
人工智能·web3·生活
whaosoft-1431 小时前
51c自动驾驶~合集15
人工智能
花楸树1 小时前
前端搭建 MCP Client(Web版)+ Server + Agent 实践
前端·人工智能
用户87612829073741 小时前
前端ai对话框架semi-design-vue
前端·人工智能
量子位1 小时前
稚晖君刚挖来的 90 后机器人大牛:逆袭履历堪比爽文男主
人工智能·llm