第三章补充:泰勒公式(B站:一高数)

视频1:泰勒公式,39分钟,小白也直接上手!|高等数学

原视频:泰勒公式,39分钟,小白也直接上手!|高等数学_哔哩哔哩_bilibili

这个视频我们会从泰勒公式是怎么被发现的,有多厉害,讲到泰勒公式的具体表达式、怎么牢牢记住,最后,我们再自己动手把函数展成泰勒公式。下个视频我们串讲泰勒公式的核心考点和必胜解法。

一、泰勒公式的引入

到底什么是泰勒公式呢?如果你直接翻开教材,你会发现泰勒公式长得非常可怕,别看了,伤身体。。。👇

我们回溯到16世纪,当时的数学家们都在研究一个神奇的东西------无穷算法。他们发现,任何一个无穷小数都可以写成10和的次方。通过类比,数学家们觉得是不是也可以用无穷多的次方合成任何曲线呢?如果能做到这一点那就太好了。因为的导数和积分都很好求。

那么,上图中右侧的一串多项式和复杂的到底有多接近呢?我们一起往下看:

如果多项式只展开到的一次项,这条直线其实在0附近的逼近效果还不错,但毕竟直线不是曲线,它其他地方长得是真不像。如下图👇

那么,我们接下来展开到,这个弯曲的感觉就有点意思了。如下图👇

我们继续展开,展开到,这个多项式的曲线和在一个周期上基本重合了。如下图👇

我们再继续展开到,这个多项式和在两个周期上已经基本重合了。如下图👇

只要展开的项数足够多,这个多项式是可以在整条实数轴上和基本重合的。展开的次数越高,近似结果就越精确。这一点和无穷小数是一个道理,稍后我们还会更深刻地解释这一点。其实上图中每一个点都会有那么一点点误差,但是这个误差已经是微乎其微了。

到这里,相信大家一定非常好奇,这个的展开式到底是怎么得出来的???以及,有没有什么通式能确保随便一个复杂的都能写出这个多项式呢?下面,我们一起来见证泰勒公式的诞生!

相关推荐
mantch7 分钟前
Nano Banana进行AI绘画中文总是糊?一招可重新渲染,清晰到可直接汇报
人工智能·aigc
编程小白_正在努力中24 分钟前
第1章 机器学习基础
人工智能·机器学习
wyw00001 小时前
目标检测之SSD
人工智能·目标检测·计算机视觉
AKAMAI1 小时前
圆满循环:Akamai 的演进如何为 AI 推理时代奠定基石
人工智能·云计算
幻云20101 小时前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化
CoderJia程序员甲1 小时前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程
梦梦代码精1 小时前
《全栈开源智能体:终结企业AI拼图时代》
人工智能·后端·深度学习·小程序·前端框架·开源·语音识别
suyong_yq1 小时前
RUHMI & RA8P1 教程 Part4 - 使用 RUHMI 转换 AI 模型文件
人工智能·ai·嵌入式·arm
程序员欣宸1 小时前
LangChain4j实战之十三:函数调用,低级API版本
java·人工智能·ai·langchain4j
charlie1145141912 小时前
从 0 开始的机器学习——NumPy 线性代数部分
开发语言·人工智能·学习·线性代数·算法·机器学习·numpy