ChatGPT、Python和OpenCV支持下的空天地遥感数据识别与计算——从0基础到15个案例实战

在科技飞速发展的时代,遥感数据的精准分析已经成为推动各行业智能决策的关键工具。从无人机监测农田到卫星数据支持气候研究,空天地遥感数据正以前所未有的方式为科研和商业带来深刻变革。然而,对于许多专业人士而言,如何高效地处理、分析和应用遥感数据仍是一个充满挑战的课题。本教程应运而生,致力于为您搭建一条从入门到精通的学习之路,通过领先的AI技术与实战案例帮助您掌握遥感数据处理的核心技能。

通过15个经过精心设计的真实案例,深度参与地质监测、城市规划、农业分析、生态评估等不同场景下的遥感应用实践。课程层层递进、结构严谨,帮助您系统性掌握从数据预处理、图像增强、特征提取到机器学习建模的每一个关键环节。

免费提供11.5G的机器学习数据,涵盖土壤成分分析、农作物分类、森林火灾检测、水体动态监测等实际应用,并重点探索植被健康、空气污染、城市发展和地质灾害预测等关键领域。

**从基础到高阶的系统化学习路径:**循序渐进,从遥感数据基础知识到复杂的实战案例,适合无基础到中高级用户,帮助您打下扎实的技术基础。

**15个行业领先的实战案例:**涵盖农林牧渔、城市发展、地质灾害监测等关键应用领域,让您亲身体验数据分析如何助力行业革新。

**先进技术整合的全流程实践:**通过Python和OpenCV的结合,打造从数据采集、处理到模型构建的完整流程,赋予您独立完成遥感分析项目的能力。

**抛弃电脑上全部传统软件:**结合ChatGPT智能支持,只用Python和OpenCV实现遥感的全部功能,让您轻松突破技术瓶颈,实现快速上手与高效学习。

**多源数据综合分析:**课程涵盖卫星、无人机和地面各个平台、涵盖多光谱、高光谱、激光多源数据;涵盖线性算法、机器学习、人工智能等层次算法。

第一部分:未来已来------工具与开发环境搭建

1.1 机器学习基础

(1)监督学习

(2)非监督学习

(3)深度学习

1.2 GPT安装与用法

(1)ChatGPT 简介

(2)ChatGPT 使用方法

1.3 Python安装与用法

(1)Python简介

(2)Python的特点

(3)Python的应用场景

(4)安装 Python

(5)Jupyter Notebook

(6)Anaconda

(7)创建第一个程序

第二部分:千里眼------遥感数据应用全流程【上机实操】

2.1 遥感数据获取

(1)遥感定义与原理

(2)常见遥感数据源

(3)遥感数据获取方法

2.2 遥感数据处理

(1)图像去噪

(2)几何校正

(3)大气校正

2.3 遥感数据计算

(1)波段选择

(2)波段计算

2.4 案例实战:计算家乡的土壤成分含量

(1)计算过程

(2)程序实现

(3)计算结果

(4)结果制图

第三部分:地面数据------图像分类【上机实操】

3.1 学习数据增广

(1)什么是数据增广

(2)数据增广的代码实现

3.2 地面化验数据综合处理

(1)地面数据的作用

(2)地面数据采样方案设计和化验方法

(3)数据读取与初步检查

(4)数据清洗与处理

(5)数据的可视化与分布分析

3.3 程序实现

(1)描述性统计分析

(2)数据分布

(3)相关性分析

(4)数据正态性检验

(5)元素之间的线性回归分析

(6)箱线图和异常值分析

(7)两元素的T检验

3.4 案例实战:自动对农作物进行分类

(1)导入必要的库并准备数据

(2)特征提取(图像降维)

(3)标签编码

(4)训练支持向量机模型

(5)对测试集图片进行分类预测

(6)评估模型性能

(7)使用网格搜索优化SVM参数

(8)使用网格搜索优化SVM参数

(9)使用PCA进行降维

第四部分:无人机数据------目标检测【上机实操】

4.1 学习制作标签数据

(1)标签数据的重要性

(2)制作和标注机器学习的标签数据

(3)常见的标注格式

(4)LabelImg

(5)标注

(6)标注VOC格式

(7)标注YOLO格式

(9)标注并导出为COCO格式

4.2 无人机多光谱数据综合处理

(1)无人机机载飞行作业

(2)地面同步数据特点

(3)无人机数据处理

4.3 程序实现

(1)数据准备与预处理

(2)环境配置

(3)算法流程

(4)实现基于边缘和轮廓的检测

(5)解释代码

(6)检查结果

4.4 案例实战:自动检测森林火灾范围

(1)林火

(2)环境设置与依赖安装

(3)加载森林图像和对应的标注文件

(4)实现火点检测算法

(5)批量处理森林图像并标记火灾点

第五部分:卫星数据------变化检测【上机实操】

5.1 学习遥感指数模型

(1)算法与模型库

(2)计算叶绿素含量

5.2 卫星数据综合处理

(1)计算二价铁含量

(2)计算全球环境监测指数

5.3 程序实现

(1)导入必要的库

(2)设置数据路径

(3)加载遥感图像

(4)水体识别算法

(5)变化检测算法

(6)保存变化结果

(7)导出变化统计表

(8)结果展示

5.4 案例实战:自动实现水体动态监测

(1)导入必要的库

(2)加载遥感图像并裁剪到一致大小

(3)计算水体指数 (NDWI)

(4)变化检测

(5)保存变化检测结果

(6)导出变化统计表

第六部分:多源数据------联合分析【上机实操】

6.1 学习图像自动配准

(1)图像配准

(2)自动配准的步骤

6.2 空天地数据综合处理

(1)图像配准

(2)导入必要的库

(3)读取无人机和卫星图像

(4)生成地理控制点 (GCP)

(5)应用配准算法

(6)保存配准后的无人机图像

(7)保存配准的坐标对应数据

6.3 程序实现

(1)导入必要的库

(2)预处理

(3)特征检测和匹配

(4)图像配准

(5)保存

6.4 案例实战:城市建筑物检测与变化监测

(1)城市建筑物检测与变化监测的原理

(2)图像预处理

(3)建筑物检测

(4)变化检测

(5)输出与可视化

(6)实战

第七部分:研究热点攻关【案例实战】

7.1 案例实战:农田作物分类与产量估算

7.2 案例实战:土地利用与土地覆盖分类

7.3 案例实战:植被健康监测与病害检测

7.4 案例实战:海岸侵蚀监测变化分析

7.5 案例实战:空气污染物浓度遥感监测

7.6 案例实战:沙漠化监测与土地退化分析

7.7 案例实战:城市违章建筑监控

7.8 案例实战:碳汇估算与生态服务分析

7.9 案例实战:地表温度与热岛效应分析

7.10案例实战:地质灾害预测与监测

相关推荐
江上挽风&sty17 分钟前
python爬虫--小白篇【爬取B站视频】
爬虫·python
yivifu24 分钟前
利用cnocr库完成中文扫描pdf文件的文字识别
python·pdf·numpy·pymupdf·cnocr
Bdawn24 分钟前
【通义实验室】开源【文本生成图片】大模型
人工智能·python·llm
觅远28 分钟前
python+img2pdf 快速图片转pdf+(img2pdf.ExifOrientationError处理、文件被打开或占用报错处理)
python·pdf·pillow
m0_7482336440 分钟前
Python Flask Web框架快速入门
前端·python·flask
宸码41 分钟前
【机器学习】手写数字识别的最优解:CNN+Softmax、Sigmoid与SVM的对比实战
人工智能·python·神经网络·算法·机器学习·支持向量机·cnn
F20226974861 小时前
使用 Python 爬取某网站简历模板(bs4/lxml+协程)
开发语言·python
cdg==吃蛋糕1 小时前
pdf读取函数,可以读取本地pdf和url的在线pdf转换为文字
python·pdf
前程的前程也迷茫1 小时前
flask程序线程问题
python·flask
博雅智信1 小时前
人工智能-自动驾驶领域
人工智能·python·深度学习·yolo·机器学习·计算机视觉·自动驾驶