PyTorch基本使用-自动微分模块

学习目的:掌握自动微分模块的使用

训练神经网络时,最常用的算法就是反向传播。在该算法中,参数(模型权重)会根据损失函数关于对应参数的梯度进行调整。为了计算这些梯度,PyTorch 内置了名为 torch.autograd的微分引擎。它支持任意计算图的自动梯度计算:

接下来我们使用这个结构进行自动微分模块的介绍。我们使用 backward 方法、grad 属性来实现梯度的计算和访问。

  • 当X为标量时梯度的计算

    python 复制代码
    import torch
    # 1. 当X为标量时梯度的计算
    def test01():
        x = torch.tensor(5)
        # 目标值
        y = torch.tensor(0.)
        # 设置要更新的权重和偏置的初始值
        w = torch.tensor(1.0,requires_grad=True,dtype=torch.float32)
        b = torch.tensor(3.0,requires_grad=True,dtype=torch.float32)
        #设置网络的输出值
        z = x*w + b #矩阵乘法
        # 设置损失函数,并进行损失计算
        loss = torch.nn.MSELoss()
        loss = loss(z,y)
        # 自动微分
        loss.backward()
        # 打印w,b变量的梯度
        # backward 函数计算的梯度值会存储在张量的grad 变量中
        print('W的梯度:',w.grad)
        print('B的梯度:',b.grad)
    
    test01()

    输出结果:

    tex 复制代码
    W的梯度: tensor(80.)
    B的梯度: tensor(16.)
  • 当X为多维张量时梯度计算

    python 复制代码
    import torch
    def test02():
        # 输入张量 2*5
        x = torch.ones(2,5)
        # 目标张量 2*3
        y = torch.zeros(2,3)
        # 设置要更新的权重和偏置的初始值
        w = torch.randn(5,3,requires_grad=True)
        b = torch.randn(3,requires_grad=True)
        #设置网络的输出值
        z = torch.matmul(x,w)+ b #矩阵乘法
        # 设置损失函数,并进行损失计算
        loss = torch.nn.MSELoss()
        loss = loss(z,y)
        # 自动微分
        loss.backward()
        # 打印w,b变量的梯度
        # backward 函数计算的梯度值会存储在张量的grad 变量中
        print('W的梯度:',w.grad)
        print('B的梯度:',b.grad)
    
    test02()

    输出结果:

    tex 复制代码
    W的梯度: tensor([[-1.7502,  0.8537,  0.6175],
            [-1.7502,  0.8537,  0.6175],
            [-1.7502,  0.8537,  0.6175],
            [-1.7502,  0.8537,  0.6175],
            [-1.7502,  0.8537,  0.6175]])
    B的梯度: tensor([-1.7502,  0.8537,  0.6175])
相关推荐
RZer9 分钟前
Hypium+python鸿蒙原生自动化安装配置
python·自动化·harmonyos
一水鉴天33 分钟前
为AI聊天工具添加一个知识系统 之77 详细设计之18 正则表达式 之5
人工智能·正则表达式
davenian1 小时前
DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
人工智能·深度学习·语言模型·deepseek
X.AI6661 小时前
【大模型LLM面试合集】大语言模型架构_llama系列模型
人工智能·语言模型·llama
CM莫问1 小时前
什么是门控循环单元?
人工智能·pytorch·python·rnn·深度学习·算法·gru
饮马长城窟1 小时前
Paddle和pytorch不可以同时引用
人工智能·pytorch·paddle
查理零世1 小时前
【算法】回溯算法专题① ——子集型回溯 python
python·算法
池佳齐2 小时前
《AI大模型开发笔记》DeepSeek技术创新点
人工智能·笔记
纠结哥_Shrek2 小时前
pytorch生成对抗网络
人工智能·pytorch·生成对抗网络
圆圆滚滚小企鹅。3 小时前
刷题记录 HOT100回溯算法-6:79. 单词搜索
笔记·python·算法·leetcode