PyTorch基本使用-自动微分模块

学习目的:掌握自动微分模块的使用

训练神经网络时,最常用的算法就是反向传播。在该算法中,参数(模型权重)会根据损失函数关于对应参数的梯度进行调整。为了计算这些梯度,PyTorch 内置了名为 torch.autograd的微分引擎。它支持任意计算图的自动梯度计算:

接下来我们使用这个结构进行自动微分模块的介绍。我们使用 backward 方法、grad 属性来实现梯度的计算和访问。

  • 当X为标量时梯度的计算

    python 复制代码
    import torch
    # 1. 当X为标量时梯度的计算
    def test01():
        x = torch.tensor(5)
        # 目标值
        y = torch.tensor(0.)
        # 设置要更新的权重和偏置的初始值
        w = torch.tensor(1.0,requires_grad=True,dtype=torch.float32)
        b = torch.tensor(3.0,requires_grad=True,dtype=torch.float32)
        #设置网络的输出值
        z = x*w + b #矩阵乘法
        # 设置损失函数,并进行损失计算
        loss = torch.nn.MSELoss()
        loss = loss(z,y)
        # 自动微分
        loss.backward()
        # 打印w,b变量的梯度
        # backward 函数计算的梯度值会存储在张量的grad 变量中
        print('W的梯度:',w.grad)
        print('B的梯度:',b.grad)
    
    test01()

    输出结果:

    tex 复制代码
    W的梯度: tensor(80.)
    B的梯度: tensor(16.)
  • 当X为多维张量时梯度计算

    python 复制代码
    import torch
    def test02():
        # 输入张量 2*5
        x = torch.ones(2,5)
        # 目标张量 2*3
        y = torch.zeros(2,3)
        # 设置要更新的权重和偏置的初始值
        w = torch.randn(5,3,requires_grad=True)
        b = torch.randn(3,requires_grad=True)
        #设置网络的输出值
        z = torch.matmul(x,w)+ b #矩阵乘法
        # 设置损失函数,并进行损失计算
        loss = torch.nn.MSELoss()
        loss = loss(z,y)
        # 自动微分
        loss.backward()
        # 打印w,b变量的梯度
        # backward 函数计算的梯度值会存储在张量的grad 变量中
        print('W的梯度:',w.grad)
        print('B的梯度:',b.grad)
    
    test02()

    输出结果:

    tex 复制代码
    W的梯度: tensor([[-1.7502,  0.8537,  0.6175],
            [-1.7502,  0.8537,  0.6175],
            [-1.7502,  0.8537,  0.6175],
            [-1.7502,  0.8537,  0.6175],
            [-1.7502,  0.8537,  0.6175]])
    B的梯度: tensor([-1.7502,  0.8537,  0.6175])
相关推荐
C嘎嘎嵌入式开发8 分钟前
python之set详谈
开发语言·python
whabc10030 分钟前
和鲸社区深度学习基础训练营2025年关卡2(2)sklearn中的MLPClassifier
人工智能·深度学习·numpy
之歆1 小时前
Python-正则表达式-信息提取-滑动窗口-数据分发-文件加载及分析器-浏览器分析-学习笔记
python·学习·正则表达式
往日情怀酿做酒 V17639296381 小时前
pytorch的介绍以及张量的创建
人工智能·pytorch·python
北辰alk1 小时前
如何实现AI多轮对话功能及解决对话记忆持久化问题
人工智能
智驱力人工智能1 小时前
极端高温下的智慧出行:危险检测与救援
人工智能·算法·安全·行为识别·智能巡航·高温预警·高温监测
Leo.yuan1 小时前
数据分析师如何构建自己的底层逻辑?
大数据·数据仓库·人工智能·数据挖掘·数据分析
笑稀了的野生俊1 小时前
ImportError: /lib/x86_64-linux-gnu/libc.so.6: version GLIBC_2.32‘ not found
linux·人工智能·ubuntu·大模型·glibc·flash-attn
吕永强1 小时前
意识边界的算法战争—脑机接口技术重构人类认知的颠覆性挑战
人工智能·科普
豌豆花下猫1 小时前
Python 潮流周刊#110:JIT 编译器两年回顾,AI 智能体工具大爆发(摘要)
后端·python·ai