PyTorch基本使用-自动微分模块

学习目的:掌握自动微分模块的使用

训练神经网络时,最常用的算法就是反向传播。在该算法中,参数(模型权重)会根据损失函数关于对应参数的梯度进行调整。为了计算这些梯度,PyTorch 内置了名为 torch.autograd的微分引擎。它支持任意计算图的自动梯度计算:

接下来我们使用这个结构进行自动微分模块的介绍。我们使用 backward 方法、grad 属性来实现梯度的计算和访问。

  • 当X为标量时梯度的计算

    python 复制代码
    import torch
    # 1. 当X为标量时梯度的计算
    def test01():
        x = torch.tensor(5)
        # 目标值
        y = torch.tensor(0.)
        # 设置要更新的权重和偏置的初始值
        w = torch.tensor(1.0,requires_grad=True,dtype=torch.float32)
        b = torch.tensor(3.0,requires_grad=True,dtype=torch.float32)
        #设置网络的输出值
        z = x*w + b #矩阵乘法
        # 设置损失函数,并进行损失计算
        loss = torch.nn.MSELoss()
        loss = loss(z,y)
        # 自动微分
        loss.backward()
        # 打印w,b变量的梯度
        # backward 函数计算的梯度值会存储在张量的grad 变量中
        print('W的梯度:',w.grad)
        print('B的梯度:',b.grad)
    
    test01()

    输出结果:

    tex 复制代码
    W的梯度: tensor(80.)
    B的梯度: tensor(16.)
  • 当X为多维张量时梯度计算

    python 复制代码
    import torch
    def test02():
        # 输入张量 2*5
        x = torch.ones(2,5)
        # 目标张量 2*3
        y = torch.zeros(2,3)
        # 设置要更新的权重和偏置的初始值
        w = torch.randn(5,3,requires_grad=True)
        b = torch.randn(3,requires_grad=True)
        #设置网络的输出值
        z = torch.matmul(x,w)+ b #矩阵乘法
        # 设置损失函数,并进行损失计算
        loss = torch.nn.MSELoss()
        loss = loss(z,y)
        # 自动微分
        loss.backward()
        # 打印w,b变量的梯度
        # backward 函数计算的梯度值会存储在张量的grad 变量中
        print('W的梯度:',w.grad)
        print('B的梯度:',b.grad)
    
    test02()

    输出结果:

    tex 复制代码
    W的梯度: tensor([[-1.7502,  0.8537,  0.6175],
            [-1.7502,  0.8537,  0.6175],
            [-1.7502,  0.8537,  0.6175],
            [-1.7502,  0.8537,  0.6175],
            [-1.7502,  0.8537,  0.6175]])
    B的梯度: tensor([-1.7502,  0.8537,  0.6175])
相关推荐
子夜江寒41 分钟前
基于 OpenCV 的图像形态学与边缘检测
python·opencv·计算机视觉
工藤学编程2 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅3 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技5 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102167 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧7 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)7 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
智航GIS7 小时前
10.4 Selenium:Web 自动化测试框架
前端·python·selenium·测试工具
没学上了7 小时前
CNNMNIST
人工智能·深度学习
jarreyer7 小时前
摄像头相关记录
python