3.5 认识决策树

3.5 认识决策树

3.5.1 认识决策树

如何高效的进行决策? 特征的先后顺序

3.5.2 决策树分类原理详解

已知有四个特征,预测 是否贷款给某个人。

先看房子,再看工作,是否贷款。

年龄,信贷情况,工作,是否贷款

1 原理

信息熵,信息增益等。

需要用到信息论的知识!问题:通过例子引入信息熵

信息论基础:

1)信息

香农:消除随机不定性的东西

小明 年龄 "我今年18岁" 是信息

小华 "小明明年19岁" (不是信息,因为我已经知道小明18岁)

2) 信息的衡量 ------信息量------ 信息熵

2 信息熵的定义

H的专业术语之为信息熵,单位为比特 bit

3 决策树的划分依据之一信息增益

4 决策树的划分依据------信息增益

当然决策树的原理不止信息增益这一种,还有其他方法,但是原理都类似,我们就不去举例计算。

3.5.3 决策树API

3.5.4 案例:泰坦尼克号乘客生存预测

流程分析:

特征值 目标值

1)获取数据

2)数据处理

缺失值处理

特征值------>字典类型

3)准备好特征值 目标值

4)划分数据集

5)特征工程:字典特征抽取

6)决策树预估器流程

7)模型评估

3.5.5 决策树可视化

1 保存树的结构到dot文件

3.5.6 决策树总结

优点:

简单的理解和解释,树木可视化

缺点:

决策树学习者可以创建不能很好推广数据的过于复杂的树,这被称为过拟合。

改进:

减枝cart算法(决策树API当中已经实现,随意森林参数调优有相关介绍)

随机森林

注意:企业重要决策,由于决策树很好的分析能力,在决策过程中应用较多,可以选择特征

3.5.7 总结

信息熵,信息增益的计算

DecisonTreeClassifier进行决策树的划分

export_graphviz导出到dot文件

相关推荐
Blossom.1182 小时前
机器学习在智能供应链中的应用:需求预测与物流优化
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人·语音识别
Gyoku Mint2 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
葫三生3 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
拓端研究室5 小时前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
随缘而动,随遇而安7 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
IT古董8 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
水木兰亭11 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
学技术的大胜嗷11 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手11 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习
Jess0712 小时前
插入排序的简单介绍
数据结构·算法·排序算法