opencv滤波操作

1.1 均值滤波

简单的平均卷积操作

边框补0,每次选3 * 3个元素相加求平均值

python 复制代码
# 导入OpenCV库,用于图像处理
import cv2
# 从matplotlib库中导入pyplot模块,用于绘制图像
from matplotlib import pyplot as plt

# 创建一个名为'window'的窗口,窗口大小自动调整
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # cv2.WINDOW_AUTOSIZE: 窗口大小自动调整,不允许用户改变窗口大小

# 使用OpenCV的imread函数读取名为"mao.jpg"的图片,参数1表示读取彩色图像
cat = cv2.imread("mao.jpg", 1)  # cat变量存储读取的图像数据,OpenCV默认以BGR格式读取

# 在名为'window'的窗口中显示图像
cv2.imshow('window', cat)

blur = cv2.blur(cat,(3,3)) #均值滤波
cv2.imshow('blur', blur)

# 等待按键事件,0表示无限期等待
key = cv2.waitKey(0)

# 检查按下的键是否是'q',如果是则销毁所有窗口
if key & 0xFF == ord('q'):  # 0xFF是掩码,用于确保只检查最低8位
    print("准备销毁窗口")
    cv2.destroyAllWindows()

1.2 方框滤波

处理结果=cv2.boxFilter(原始图像,目标图像深度,核大小,normalize属性),目标图像深度是-1表示和原图像大小相同,效果几乎和均值滤波持平

true = 1 = 所有值相加 除以 矩阵元素的个数

false = 0 = 是k = 所有的元素相加,超过255时取255

python 复制代码
# 导入OpenCV库,用于图像处理  
import cv2  
# 从matplotlib库中导入pyplot模块,用于绘制图像  
from matplotlib import pyplot as plt  
  
# 创建一个名为'window'的窗口,窗口大小自动调整  
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # cv2.WINDOW_AUTOSIZE: 窗口大小自动调整,不允许用户改变窗口大小  
  
# 使用OpenCV的imread函数读取名为"mao.jpg"的图片,参数1表示读取彩色图像  
cat = cv2.imread("mao.jpg", 1)  # cat变量存储读取的图像数据,OpenCV默认以BGR格式读取  
  
# 在名为'window'的窗口中显示图像  
cv2.imshow('window', cat)  
  
blur = cv2.blur(cat,(3,3)) #均值滤波  
cv2.imshow('blur', blur)  
  
box = cv2.boxFilter(cat,-1,(3,3),normalize=True) #方框滤波  
cv2.imshow('box', box)  
  
# 等待按键事件,0表示无限期等待  
key = cv2.waitKey(0)  
  
# 检查按下的键是否是'q',如果是则销毁所有窗口  
if key & 0xFF == ord('q'):  # 0xFF是掩码,用于确保只检查最低8位  
    print("准备销毁窗口")  
    cv2.destroyAllWindows()

1.3 高斯滤波

结果=所有对应的卷积核 * 相应的值 相加

python 复制代码
# 导入OpenCV库,用于图像处理  
import cv2  
# 从matplotlib库中导入pyplot模块,用于绘制图像  
from matplotlib import pyplot as plt  
  
# 创建一个名为'window'的窗口,窗口大小自动调整  
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # cv2.WINDOW_AUTOSIZE: 窗口大小自动调整,不允许用户改变窗口大小  
  
# 使用OpenCV的imread函数读取名为"mao.jpg"的图片,参数1表示读取彩色图像  
cat = cv2.imread("mao.jpg", 1)  # cat变量存储读取的图像数据,OpenCV默认以BGR格式读取  
  
# 在名为'window'的窗口中显示图像  
cv2.imshow('window', cat)  
  
blur = cv2.blur(cat,(3,3)) #均值滤波  
cv2.imshow('blur', blur)  
  
box = cv2.boxFilter(cat,-1,(3,3),normalize=True) #方框滤波  
cv2.imshow('box', box)  
  
aussian = cv2.GaussianBlur(cat,(3,3),1) #高斯滤波  
cv2.imshow('aussian', aussian)  
  
# 等待按键事件,0表示无限期等待  
key = cv2.waitKey(0)  
  
# 检查按下的键是否是'q',如果是则销毁所有窗口  
if key & 0xFF == ord('q'):  # 0xFF是掩码,用于确保只检查最低8位  
    print("准备销毁窗口")  
    cv2.destroyAllWindows()

1.4 中值滤波

中值滤波是取中间元素作为值,不如3X3的范围有9个元素,每次取第五个元素

python 复制代码
# 导入OpenCV库,用于图像处理  
import cv2  
# 从matplotlib库中导入pyplot模块,用于绘制图像  
from matplotlib import pyplot as plt  
  
# 创建一个名为'window'的窗口,窗口大小自动调整  
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # cv2.WINDOW_AUTOSIZE: 窗口大小自动调整,不允许用户改变窗口大小  
  
# 使用OpenCV的imread函数读取名为"mao.jpg"的图片,参数1表示读取彩色图像  
cat = cv2.imread("mao.jpg", 1)  # cat变量存储读取的图像数据,OpenCV默认以BGR格式读取  
  
# 在名为'window'的窗口中显示图像  
cv2.imshow('window', cat)  
  
blur = cv2.blur(cat,(3,3)) #均值滤波  
cv2.imshow('blur', blur)  
  
box = cv2.boxFilter(cat,-1,(3,3),normalize=True) #方框滤波  
cv2.imshow('box', box)  
  
aussian = cv2.GaussianBlur(cat,(3,3),1) #高斯滤波  
cv2.imshow('aussian', aussian)  
  
median = cv2.medianBlur(cat,5) #中值滤波  
cv2.imshow('median', aussian)  
  
# 等待按键事件,0表示无限期等待  
key = cv2.waitKey(0)  
  
# 检查按下的键是否是'q',如果是则销毁所有窗口  
if key & 0xFF == ord('q'):  # 0xFF是掩码,用于确保只检查最低8位  
    print("准备销毁窗口")  
    cv2.destroyAllWindows()
相关推荐
西柚小萌新13 分钟前
【深度学习:进阶篇】--2.4.BN与神经网络调优
人工智能·深度学习·神经网络
金融小师妹15 分钟前
解码美元-黄金负相关:LSTM-Attention因果发现与黄金反弹推演
大数据·人工智能·算法
DZSpace19 分钟前
AI Agent 核心策略解析:Function Calling 与 ReAct 的设计哲学与应用实践
人工智能·大模型
小郑00122 分钟前
智能体还能配置MCP?智灵助理:打造智能交互新时代的全能助手
人工智能
AI大模型技术社26 分钟前
神经网络学习路线图:从感知机到Transformer的认知跃迁
人工智能
黄卷青灯7738 分钟前
把下载的ippicv.tgz放入<opencv_build_dir>/3rdparty/ippicv/download/中cmake依然无法识别
人工智能·opencv·计算机视觉·ippicv
程序员老刘1 小时前
MCP:新时代的API,每个程序员都应该掌握
人工智能·flutter·mcp
Humbunklung1 小时前
全连接层和卷积层
人工智能·python·深度学习·神经网络·机器学习·cnn
广州山泉婚姻1 小时前
解锁高效开发:Spring Boot 3和MyBatis-Flex在智慧零工平台后端的应用实战
人工智能·spring boot·spring
三花AI1 小时前
Higgsfield AI 整合 Flux.1 Kontext:一站式创意工作流解决方案
人工智能