opencv滤波操作

1.1 均值滤波

简单的平均卷积操作

边框补0,每次选3 * 3个元素相加求平均值

python 复制代码
# 导入OpenCV库,用于图像处理
import cv2
# 从matplotlib库中导入pyplot模块,用于绘制图像
from matplotlib import pyplot as plt

# 创建一个名为'window'的窗口,窗口大小自动调整
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # cv2.WINDOW_AUTOSIZE: 窗口大小自动调整,不允许用户改变窗口大小

# 使用OpenCV的imread函数读取名为"mao.jpg"的图片,参数1表示读取彩色图像
cat = cv2.imread("mao.jpg", 1)  # cat变量存储读取的图像数据,OpenCV默认以BGR格式读取

# 在名为'window'的窗口中显示图像
cv2.imshow('window', cat)

blur = cv2.blur(cat,(3,3)) #均值滤波
cv2.imshow('blur', blur)

# 等待按键事件,0表示无限期等待
key = cv2.waitKey(0)

# 检查按下的键是否是'q',如果是则销毁所有窗口
if key & 0xFF == ord('q'):  # 0xFF是掩码,用于确保只检查最低8位
    print("准备销毁窗口")
    cv2.destroyAllWindows()

1.2 方框滤波

处理结果=cv2.boxFilter(原始图像,目标图像深度,核大小,normalize属性),目标图像深度是-1表示和原图像大小相同,效果几乎和均值滤波持平

true = 1 = 所有值相加 除以 矩阵元素的个数

false = 0 = 是k = 所有的元素相加,超过255时取255

python 复制代码
# 导入OpenCV库,用于图像处理  
import cv2  
# 从matplotlib库中导入pyplot模块,用于绘制图像  
from matplotlib import pyplot as plt  
  
# 创建一个名为'window'的窗口,窗口大小自动调整  
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # cv2.WINDOW_AUTOSIZE: 窗口大小自动调整,不允许用户改变窗口大小  
  
# 使用OpenCV的imread函数读取名为"mao.jpg"的图片,参数1表示读取彩色图像  
cat = cv2.imread("mao.jpg", 1)  # cat变量存储读取的图像数据,OpenCV默认以BGR格式读取  
  
# 在名为'window'的窗口中显示图像  
cv2.imshow('window', cat)  
  
blur = cv2.blur(cat,(3,3)) #均值滤波  
cv2.imshow('blur', blur)  
  
box = cv2.boxFilter(cat,-1,(3,3),normalize=True) #方框滤波  
cv2.imshow('box', box)  
  
# 等待按键事件,0表示无限期等待  
key = cv2.waitKey(0)  
  
# 检查按下的键是否是'q',如果是则销毁所有窗口  
if key & 0xFF == ord('q'):  # 0xFF是掩码,用于确保只检查最低8位  
    print("准备销毁窗口")  
    cv2.destroyAllWindows()

1.3 高斯滤波

结果=所有对应的卷积核 * 相应的值 相加

python 复制代码
# 导入OpenCV库,用于图像处理  
import cv2  
# 从matplotlib库中导入pyplot模块,用于绘制图像  
from matplotlib import pyplot as plt  
  
# 创建一个名为'window'的窗口,窗口大小自动调整  
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # cv2.WINDOW_AUTOSIZE: 窗口大小自动调整,不允许用户改变窗口大小  
  
# 使用OpenCV的imread函数读取名为"mao.jpg"的图片,参数1表示读取彩色图像  
cat = cv2.imread("mao.jpg", 1)  # cat变量存储读取的图像数据,OpenCV默认以BGR格式读取  
  
# 在名为'window'的窗口中显示图像  
cv2.imshow('window', cat)  
  
blur = cv2.blur(cat,(3,3)) #均值滤波  
cv2.imshow('blur', blur)  
  
box = cv2.boxFilter(cat,-1,(3,3),normalize=True) #方框滤波  
cv2.imshow('box', box)  
  
aussian = cv2.GaussianBlur(cat,(3,3),1) #高斯滤波  
cv2.imshow('aussian', aussian)  
  
# 等待按键事件,0表示无限期等待  
key = cv2.waitKey(0)  
  
# 检查按下的键是否是'q',如果是则销毁所有窗口  
if key & 0xFF == ord('q'):  # 0xFF是掩码,用于确保只检查最低8位  
    print("准备销毁窗口")  
    cv2.destroyAllWindows()

1.4 中值滤波

中值滤波是取中间元素作为值,不如3X3的范围有9个元素,每次取第五个元素

python 复制代码
# 导入OpenCV库,用于图像处理  
import cv2  
# 从matplotlib库中导入pyplot模块,用于绘制图像  
from matplotlib import pyplot as plt  
  
# 创建一个名为'window'的窗口,窗口大小自动调整  
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # cv2.WINDOW_AUTOSIZE: 窗口大小自动调整,不允许用户改变窗口大小  
  
# 使用OpenCV的imread函数读取名为"mao.jpg"的图片,参数1表示读取彩色图像  
cat = cv2.imread("mao.jpg", 1)  # cat变量存储读取的图像数据,OpenCV默认以BGR格式读取  
  
# 在名为'window'的窗口中显示图像  
cv2.imshow('window', cat)  
  
blur = cv2.blur(cat,(3,3)) #均值滤波  
cv2.imshow('blur', blur)  
  
box = cv2.boxFilter(cat,-1,(3,3),normalize=True) #方框滤波  
cv2.imshow('box', box)  
  
aussian = cv2.GaussianBlur(cat,(3,3),1) #高斯滤波  
cv2.imshow('aussian', aussian)  
  
median = cv2.medianBlur(cat,5) #中值滤波  
cv2.imshow('median', aussian)  
  
# 等待按键事件,0表示无限期等待  
key = cv2.waitKey(0)  
  
# 检查按下的键是否是'q',如果是则销毁所有窗口  
if key & 0xFF == ord('q'):  # 0xFF是掩码,用于确保只检查最低8位  
    print("准备销毁窗口")  
    cv2.destroyAllWindows()
相关推荐
LCG元13 分钟前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术17 分钟前
Stack Overflow,轰然倒下!
前端·人工智能·后端
彭祥.34 分钟前
Jetson边缘计算主板:Ubuntu 环境配置 CUDA 与 cudNN 推理环境 + OpenCV 与 C++ 进行目标分类
c++·opencv·分类
超龄超能程序猿1 小时前
(三)PS识别:基于噪声分析PS识别的技术实现
图像处理·人工智能·计算机视觉
要努力啊啊啊1 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
好开心啊没烦恼1 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
生态遥感监测笔记1 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
天天扭码2 小时前
从图片到语音:我是如何用两大模型API打造沉浸式英语学习工具的
前端·人工智能·github
Tony沈哲2 小时前
macOS 上为 Compose Desktop 构建跨架构图像处理 dylib:OpenCV + libraw + libheif 实践指南
opencv·算法
张彦峰ZYF2 小时前
从检索到生成:RAG 如何重构大模型的知识边界?
人工智能·ai·aigc