Pytorch实现MobilenetV2官方源码

此处为官方地址

python 复制代码
from functools import partial
from typing import Any, Callable, List, Optional

import torch
from torch import nn, Tensor

from ..ops.misc import Conv2dNormActivation
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import register_model, Weights, WeightsEnum
from ._meta import _IMAGENET_CATEGORIES
from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface


__all__ = ["MobileNetV2", "MobileNet_V2_Weights", "mobilenet_v2"]


# necessary for backwards compatibility
class InvertedResidual(nn.Module):
    def __init__(
        self, inp: int, oup: int, stride: int, expand_ratio: int, norm_layer: Optional[Callable[..., nn.Module]] = None
    ) -> None:
        super().__init__()
        self.stride = stride
        if stride not in [1, 2]:
            raise ValueError(f"stride should be 1 or 2 instead of {stride}")

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = self.stride == 1 and inp == oup

        layers: List[nn.Module] = []
        if expand_ratio != 1:
            # pw
            layers.append(
                Conv2dNormActivation(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6)
            )
        layers.extend(
            [
                # dw
                Conv2dNormActivation(
                    hidden_dim,
                    hidden_dim,
                    stride=stride,
                    groups=hidden_dim,
                    norm_layer=norm_layer,
                    activation_layer=nn.ReLU6,
                ),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                norm_layer(oup),
            ]
        )
        self.conv = nn.Sequential(*layers)
        self.out_channels = oup
        self._is_cn = stride > 1

    def forward(self, x: Tensor) -> Tensor:
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Module):
    def __init__(
        self,
        num_classes: int = 1000,
        width_mult: float = 1.0,
        inverted_residual_setting: Optional[List[List[int]]] = None,
        round_nearest: int = 8,
        block: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        dropout: float = 0.2,
    ) -> None:
        """
        MobileNet V2 main class

        Args:
            num_classes (int): Number of classes
            width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
            inverted_residual_setting: Network structure
            round_nearest (int): Round the number of channels in each layer to be a multiple of this number
            Set to 1 to turn off rounding
            block: Module specifying inverted residual building block for mobilenet
            norm_layer: Module specifying the normalization layer to use
            dropout (float): The droupout probability

        """
        super().__init__()
        _log_api_usage_once(self)

        if block is None:
            block = InvertedResidual

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        input_channel = 32
        last_channel = 1280

        if inverted_residual_setting is None:
            inverted_residual_setting = [
                # t, c, n, s
                [1, 16, 1, 1],
                [6, 24, 2, 2],
                [6, 32, 3, 2],
                [6, 64, 4, 2],
                [6, 96, 3, 1],
                [6, 160, 3, 2],
                [6, 320, 1, 1],
            ]

        # only check the first element, assuming user knows t,c,n,s are required
        if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
            raise ValueError(
                f"inverted_residual_setting should be non-empty or a 4-element list, got {inverted_residual_setting}"
            )

        # building first layer
        input_channel = _make_divisible(input_channel * width_mult, round_nearest)
        self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
        features: List[nn.Module] = [
            Conv2dNormActivation(3, input_channel, stride=2, norm_layer=norm_layer, activation_layer=nn.ReLU6)
        ]
        # building inverted residual blocks
        for t, c, n, s in inverted_residual_setting:
            output_channel = _make_divisible(c * width_mult, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer))
                input_channel = output_channel
        # building last several layers
        features.append(
            Conv2dNormActivation(
                input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6
            )
        )
        # make it nn.Sequential
        self.features = nn.Sequential(*features)

        # building classifier
        self.classifier = nn.Sequential(
            nn.Dropout(p=dropout),
            nn.Linear(self.last_channel, num_classes),
        )

        # weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        # This exists since TorchScript doesn't support inheritance, so the superclass method
        # (this one) needs to have a name other than `forward` that can be accessed in a subclass
        x = self.features(x)
        # Cannot use "squeeze" as batch-size can be 1
        x = nn.functional.adaptive_avg_pool2d(x, (1, 1))
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


_COMMON_META = {
    "num_params": 3504872,
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
}


class MobileNet_V2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/mobilenet_v2-b0353104.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv2",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 71.878,
                    "acc@5": 90.286,
                }
            },
            "_ops": 0.301,
            "_file_size": 13.555,
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/mobilenet_v2-7ebf99e0.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-reg-tuning",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 72.154,
                    "acc@5": 90.822,
                }
            },
            "_ops": 0.301,
            "_file_size": 13.598,
            "_docs": """
                These weights improve upon the results of the original paper by using a modified version of TorchVision's
                `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
        },
    )
    DEFAULT = IMAGENET1K_V2


@register_model()
@handle_legacy_interface(weights=("pretrained", MobileNet_V2_Weights.IMAGENET1K_V1))
def mobilenet_v2(
    *, weights: Optional[MobileNet_V2_Weights] = None, progress: bool = True, **kwargs: Any
) -> MobileNetV2:
    """MobileNetV2 architecture from the `MobileNetV2: Inverted Residuals and Linear
    Bottlenecks <https://arxiv.org/abs/1801.04381>`_ paper.

    Args:
        weights (:class:`~torchvision.models.MobileNet_V2_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.MobileNet_V2_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.mobilenetv2.MobileNetV2``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.MobileNet_V2_Weights
        :members:
    """
    weights = MobileNet_V2_Weights.verify(weights)

    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

    model = MobileNetV2(**kwargs)

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))

    return model
相关推荐
Yuleave几秒前
高效流式大语言模型(StreamingLLM)——基于“注意力汇聚点”的突破性研究
人工智能·语言模型·自然语言处理
cqbzcsq3 分钟前
ESMC-600M蛋白质语言模型本地部署攻略
人工智能·语言模型·自然语言处理
查理零世1 小时前
保姆级讲解 python之zip()方法实现矩阵行列转置
python·算法·矩阵
刀客1231 小时前
python3+TensorFlow 2.x(四)反向传播
人工智能·python·tensorflow
SpikeKing1 小时前
LLM - 大模型 ScallingLaws 的设计 100B 预训练方案(PLM) 教程(5)
人工智能·llm·预训练·scalinglaws·100b·deepnorm·egs
小枫@码1 小时前
免费GPU算力,不花钱部署DeepSeek-R1
人工智能·语言模型
liruiqiang051 小时前
机器学习 - 初学者需要弄懂的一些线性代数的概念
人工智能·线性代数·机器学习·线性回归
Icomi_2 小时前
【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法
c语言·c++·人工智能·深度学习·神经网络·机器学习·计算机视觉
微学AI2 小时前
GPU算力平台|在GPU算力平台部署可图大模型Kolors的应用实战教程
人工智能·大模型·llm·gpu算力
西猫雷婶2 小时前
python学opencv|读取图像(四十六)使用cv2.bitwise_or()函数实现图像按位或运算
人工智能·opencv·计算机视觉