MetaGPT源码 (ContextMixin 类)

目录

    • [理解 ContextMixin](#理解 ContextMixin)
    • [测试 ContextMixin](#测试 ContextMixin)
      • 示例:ModelX
        • [1. 配置优先级](#1. 配置优先级)
        • [2. 多继承](#2. 多继承)
        • [3. 多继承重写](#3. 多继承重写)
        • [4. 配置优先级](#4. 配置优先级)

在本文中,我们将探索 ContextMixin 类,它在多重继承场景中的集成及其在 Python 配置和上下文管理中的应用。此外,我们将通过测试验证其功能,以了解它如何简化模型配置的处理。让我们深入了解代码片段的详细解释。


理解 ContextMixin

什么是 ContextMixin?

ContextMixin 是一个用于高效管理上下文和配置的 Python 类。继承该类的模型或对象能够:

  1. 通过灵活的优先级规则处理上下文(private_context)和配置(private_config)。
  2. 管理与 LLM(private_llm)实例的交互。
  3. 支持动态设置属性的覆盖机制。

主要组件

  • 私有上下文和配置

    • private_contextprivate_config 被设计为内部属性,为每个实例提供灵活的作用域。
    • 这些属性默认值为 None,但可以显式覆盖。
  • LLM 管理

    • 通过 private_llm 集成 LLM,支持从配置动态初始化。

实现细节

以下是核心 ContextMixin 类:

python 复制代码
from typing import Optional

from pydantic import BaseModel, ConfigDict, Field, model_validator

from metagpt.config2 import Config
from metagpt.context import Context
from metagpt.provider.base_llm import BaseLLM


class ContextMixin(BaseModel):
    """Mixin class for context and config"""

    model_config = ConfigDict(arbitrary_types_allowed=True, extra="allow")

    # Pydantic has bug on _private_attr when using inheritance, so we use private_* instead
    # - https://github.com/pydantic/pydantic/issues/7142
    # - https://github.com/pydantic/pydantic/issues/7083
    # - https://github.com/pydantic/pydantic/issues/7091

    # Env/Role/Action will use this context as private context, or use self.context as public context
    private_context: Optional[Context] = Field(default=None, exclude=True)
    # Env/Role/Action will use this config as private config, or use self.context.config as public config
    private_config: Optional[Config] = Field(default=None, exclude=True)

    # Env/Role/Action will use this llm as private llm, or use self.context._llm instance
    private_llm: Optional[BaseLLM] = Field(default=None, exclude=True)

    @model_validator(mode="after")
    def validate_context_mixin_extra(self):
        self._process_context_mixin_extra()
        return self

    def _process_context_mixin_extra(self):
        """Process the extra field"""
        kwargs = self.model_extra or {}
        self.set_context(kwargs.pop("context", None))
        self.set_config(kwargs.pop("config", None))
        self.set_llm(kwargs.pop("llm", None))

    def set(self, k, v, override=False):
        """Set attribute"""
        if override or not self.__dict__.get(k):
            self.__dict__[k] = v

    def set_context(self, context: Context, override=True):
        """Set context"""
        self.set("private_context", context, override)

    def set_config(self, config: Config, override=False):
        """Set config"""
        self.set("private_config", config, override)
        if config is not None:
            _ = self.llm  # init llm

    def set_llm(self, llm: BaseLLM, override=False):
        """Set llm"""
        self.set("private_llm", llm, override)

    @property
    def config(self) -> Config:
        """Role config: role config > context config"""
        if self.private_config:
            return self.private_config
        return self.context.config

    @config.setter
    def config(self, config: Config) -> None:
        """Set config"""
        self.set_config(config)

    @property
    def context(self) -> Context:
        """Role context: role context > context"""
        if self.private_context:
            return self.private_context
        return Context()

    @context.setter
    def context(self, context: Context) -> None:
        """Set context"""
        self.set_context(context)

    @property
    def llm(self) -> BaseLLM:
        """Role llm: if not existed, init from role.config"""
        # print(f"class:{self.__class__.__name__}({self.name}), llm: {self._llm}, llm_config: {self._llm_config}")
        if not self.private_llm:
            self.private_llm = self.context.llm_with_cost_manager_from_llm_config(self.config.llm)
        return self.private_llm

    @llm.setter
    def llm(self, llm: BaseLLM) -> None:
        """Set llm"""
        self.private_llm = llm

ContextMixin 通过 Pydantic 进行模型验证和数据管理,在处理任意字段时提供了灵活性。


测试 ContextMixin

示例:ModelX

为了演示 ContextMixin 的工作原理,我们创建了一个简单的模型 ModelX,继承自 ContextMixin, 验证 ModelX 能正确继承默认属性,同时保留 ContextMixin 的功能。

ContextMixin 可以无缝集成到多重继承的层次结构中,
ModelY 结合了 ContextMixinWTFMixin,继承了两者的字段和功能。

python 复制代码
class ModelX(ContextMixin, BaseModel):
    a: str = "a"
    b: str = "b"

class WTFMixin(BaseModel):
    c: str = "c"
    d: str = "d"

class ModelY(WTFMixin, ModelX):
    pass

def test_config_mixin_1():
    new_model = ModelX()
    assert new_model.a == "a"
    assert new_model.b == "b"
test_config_mixin_1()
1. 配置优先级
python 复制代码
from metagpt.configs.llm_config import LLMConfig

mock_llm_config = LLMConfig(
    llm_type="mock",
    api_key="mock_api_key",
    base_url="mock_base_url",
    app_id="mock_app_id",
    api_secret="mock_api_secret",
    domain="mock_domain",
)
mock_llm_config_proxy = LLMConfig(
    llm_type="mock",
    api_key="mock_api_key",
    base_url="mock_base_url",
    proxy="http://localhost:8080",
)

def test_config_mixin_2():
    i = Config(llm=mock_llm_config)
    j = Config(llm=mock_llm_config_proxy)
    obj = ModelX(config=i)
    assert obj.config == i
    assert obj.config.llm == mock_llm_config

    obj.set_config(j)
    # obj already has a config, so it will not be set
    assert obj.config == i
test_config_mixin_2()
2. 多继承
python 复制代码
def test_config_mixin_3_multi_inheritance_not_override_config():
    """Test config mixin with multiple inheritance"""
    i = Config(llm=mock_llm_config)
    j = Config(llm=mock_llm_config_proxy)
    obj = ModelY(config=i)
    assert obj.config == i
    assert obj.config.llm == mock_llm_config

    obj.set_config(j)
    # obj already has a config, so it will not be set
    assert obj.config == i
    assert obj.config.llm == mock_llm_config

    assert obj.a == "a"
    assert obj.b == "b"
    assert obj.c == "c"
    assert obj.d == "d"

    print(obj.__dict__.keys())
    print(obj.__dict__)
    
    assert "private_config" in obj.__dict__.keys()

test_config_mixin_3_multi_inheritance_not_override_config()
dict_keys(['private_context', 'private_config', 'private_llm', 'a', 'b', 'c', 'd'])
{'private_context': None, 'private_config': Config(extra_fields=None, project_path='', project_name='', inc=False, reqa_file='', max_auto_summarize_code=0, git_reinit=False, llm=LLMConfig(extra_fields=None, api_key='mock_api_key', api_type=<LLMType.OPENAI: 'openai'>, base_url='mock_base_url', api_version=None, model=None, pricing_plan=None, access_key=None, secret_key=None, session_token=None, endpoint=None, app_id='mock_app_id', api_secret='mock_api_secret', domain='mock_domain', max_token=4096, temperature=0.0, top_p=1.0, top_k=0, repetition_penalty=1.0, stop=None, presence_penalty=0.0, frequency_penalty=0.0, best_of=None, n=None, stream=True, seed=None, logprobs=None, top_logprobs=None, timeout=600, context_length=None, region_name=None, proxy=None, calc_usage=True, use_system_prompt=True), embedding=EmbeddingConfig(extra_fields=None, api_type=None, api_key=None, base_url=None, api_version=None, model=None, embed_batch_size=None, dimensions=None), omniparse=OmniParseConfig(extra_fields=None, api_key='', base_url=''), proxy='', search=SearchConfig(extra_fields=None, api_type=<SearchEngineType.DUCK_DUCK_GO: 'ddg'>, api_key='', cse_id='', search_func=None, params={'engine': 'google', 'google_domain': 'google.com', 'gl': 'us', 'hl': 'en'}), browser=BrowserConfig(extra_fields=None, engine=<WebBrowserEngineType.PLAYWRIGHT: 'playwright'>, browser_type='chromium'), mermaid=MermaidConfig(extra_fields=None, engine='nodejs', path='mmdc', puppeteer_config='', pyppeteer_path='/usr/bin/google-chrome-stable'), s3=None, redis=None, repair_llm_output=False, prompt_schema='json', workspace=WorkspaceConfig(extra_fields=None, path=WindowsPath('d:/llm/metagpt/workspace'), use_uid=False, uid=''), enable_longterm_memory=False, code_review_k_times=2, agentops_api_key='', metagpt_tti_url='', language='English', redis_key='placeholder', iflytek_app_id='', iflytek_api_secret='', iflytek_api_key='', azure_tts_subscription_key='', azure_tts_region=''), 'private_llm': <metagpt.provider.openai_api.OpenAILLM object at 0x00000128F0753910>, 'a': 'a', 'b': 'b', 'c': 'c', 'd': 'd'}
3. 多继承重写
python 复制代码
mock_llm_config_zhipu = LLMConfig(
    llm_type="zhipu",
    api_key="mock_api_key.zhipu",
    base_url="mock_base_url",
    model="mock_zhipu_model",
    proxy="http://localhost:8080",
)

def test_config_mixin_4_multi_inheritance_override_config():
    """Test config mixin with multiple inheritance"""
    i = Config(llm=mock_llm_config)
    j = Config(llm=mock_llm_config_zhipu)
    obj = ModelY(config=i)
    assert obj.config == i
    assert obj.config.llm == mock_llm_config

    obj.set_config(j, override=True)
    # override obj.config
    assert obj.config == j
    assert obj.config.llm == mock_llm_config_zhipu

    assert obj.a == "a"
    assert obj.b == "b"
    assert obj.c == "c"
    assert obj.d == "d"

    print(obj.__dict__.keys())
    assert "private_config" in obj.__dict__.keys()
    assert obj.config.llm.model == "mock_zhipu_model"
test_config_mixin_4_multi_inheritance_override_config()
dict_keys(['private_context', 'private_config', 'private_llm', 'a', 'b', 'c', 'd'])
4. 配置优先级
python 复制代码
from pathlib import Path
import pytest
from metagpt.actions import Action
from metagpt.config2 import Config
from metagpt.const import CONFIG_ROOT
from metagpt.environment import Environment
from metagpt.roles import Role
from metagpt.team import Team

@pytest.mark.asyncio
async def test_config_priority():
    """If action's config is set, then its llm will be set, otherwise, it will use the role's llm"""
    home_dir = Path.home() / CONFIG_ROOT
    gpt4t = Config.from_home("gpt-4-turbo.yaml")
    if not home_dir.exists():
        assert gpt4t is None
    gpt35 = Config.default()
    gpt35.llm.model = "gpt35"
    gpt4 = Config.default()
    gpt4.llm.model = "gpt-4-0613"

    a1 = Action(name="Say", instruction="Say your opinion with emotion and don't repeat it", config=gpt4t)
    a2 = Action(name="Say", instruction="Say your opinion with emotion and don't repeat it")
    a3 = Action(name="Vote", instruction="Vote for the candidate, and say why you vote for him/her")

    # it will not work for a1 because the config is already set
    A = Role(name="A", profile="Democratic candidate", goal="Win the election", actions=[a1], watch=[a2], config=gpt4)
    # it will work for a2 because the config is not set
    B = Role(name="B", profile="Republican candidate", goal="Win the election", actions=[a2], watch=[a1], config=gpt4)
    # ditto
    C = Role(name="C", profile="Voter", goal="Vote for the candidate", actions=[a3], watch=[a1, a2], config=gpt35)

    env = Environment(desc="US election live broadcast")
    Team(investment=10.0, env=env, roles=[A, B, C])

    assert a1.llm.model == "gpt-4-turbo" if Path(home_dir / "gpt-4-turbo.yaml").exists() else "gpt-4-0613"
    assert a2.llm.model == "gpt-4-0613"
    assert a3.llm.model == "gpt35"

await test_config_priority()

如果有任何问题,欢迎在评论区提问。

相关推荐
正在走向自律5 天前
探秘MetaGPT:革新软件开发的多智能体框架(22/30)
多智能体·ai agent·ai智能体·metagpt
伊织code9 天前
MetaGPT - 多Agent框架
ai·agent·智能体·metagpt
ZHOU_WUYI23 天前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
ZHOU_WUYI1 个月前
metagpt中ActionNode的用法
metagpt
ZHOU_WUYI1 个月前
metagpt源码 (PlaywrightWrapper类)
metagpt
ZHOU_WUYI1 个月前
3.metagpt中的软件公司智能体 (Architect 角色)
metagpt
ZHOU_WUYI1 个月前
MetaGPT源码 (Memory 类)
metagpt
ZHOU_WUYI1 个月前
2.metagpt中的软件公司智能体 (ProductManager 角色)
人工智能·metagpt
ZHOU_WUYI1 个月前
1.metagpt中的软件公司智能体 (PrepareDocuments Action)
人工智能·metagpt
ZHOU_WUYI1 个月前
metagpt 多智能体系统
metagpt