OpenCV中的图片矫正

一、实验原理

基于计算机视觉中的透视变换(Perspective Transformation),也称为单应性(Homography)。透视变换是一种几何变换,用于将图像从一个平面映射到另一个平面,同时保持直线的直线性。这种变换在图像处理中非常有用,尤其是在图像校正、图像拼接、图像增强等领域。

二、实验代码

复制代码
# 导入OpenCV和NumPy库
import cv2
import numpy as np

# 读取图片文件
img = cv2.imread('./youhua.png')

# 定义四个点,这些点是图片中需要被变换的区域的四个角点
points1 = np.float32([
    [174,143],  # 左上角点
    [623,37],   # 右上角点
    [90,492],   # 左下角点
    [656,550]   # 右下角点
])

# 计算包围points1的最小外接矩形的四个角点
points2 = np.float32([
    [min(points1[:,0]),min(points1[:,1])],  # 左上角点
    [max(points1[:,0]),min(points1[:,1])],  # 右上角点
    [min(points1[:,0]),max(points1[:,1])],  # 左下角点
    [max(points1[:,0]),max(points1[:,1])]   # 右下角点
])

# 使用getPerspectiveTransform函数计算透视变换矩阵M
M = cv2.getPerspectiveTransform(points1, points2)

# 使用warpPerspective函数对图片进行透视变换
dst = cv2.warpPerspective(img, M, (img.shape[1], img.shape[0]))

# 计算变换后图片的最小外接矩形的坐标
min_x, min_y = points2.min(axis=0).astype(int)
max_x, max_y = points2.max(axis=0).astype(int)

# 根据最小外接矩形的坐标裁剪变换后的图片
cropped_dst = dst[min_y:max_y, min_x:max_x]

# 显示原始图片
cv2.imshow('img', img)

# 显示裁剪后的变换图片
cv2.imshow('cropped_dst', cropped_dst)

# 等待按键,0表示无限等待直到有按键按下
cv2.waitKey(0)

三、实验现象

相关推荐
无规则ai6 分钟前
AI三巨头:机器学习、深度学习与人工智能解析
人工智能·深度学习·机器学习
不剪发的Tony老师16 分钟前
字节跳动正式开源AI智能体开发平台Coze
人工智能·coze
love530love20 分钟前
Windows 如何更改 ModelScope 的模型下载缓存位置?
运维·人工智能·windows·python·缓存·modelscope
一百天成为python专家3 小时前
数据可视化
开发语言·人工智能·python·机器学习·信息可视化·numpy
金井PRATHAMA3 小时前
主要分布在背侧海马体(dHPC)CA1区域(dCA1)的时空联合细胞对NLP中的深层语义分析的积极影响和启示
人工智能·神经网络·自然语言处理
说私域3 小时前
技术赋能与营销创新:开源链动2+1模式AI智能名片S2B2C商城小程序的流量转化路径研究
人工智能·小程序·开源
倒悬于世6 小时前
开源的语音合成大模型-Cosyvoice使用介绍
人工智能·python·语音识别
pk_xz1234567 小时前
光电二极管探测器电流信号处理与指令输出系统
人工智能·深度学习·数学建模·数据挖掘·信号处理·超分辨率重建
蓝蜂物联网7 小时前
边缘计算网关赋能智慧农业:物联网边缘计算的创新应用与实践
人工智能·物联网·边缘计算
酌沧7 小时前
AI图像编辑能力评测的8大测评集
人工智能