OpenCV中的图片矫正

一、实验原理

基于计算机视觉中的透视变换(Perspective Transformation),也称为单应性(Homography)。透视变换是一种几何变换,用于将图像从一个平面映射到另一个平面,同时保持直线的直线性。这种变换在图像处理中非常有用,尤其是在图像校正、图像拼接、图像增强等领域。

二、实验代码

复制代码
# 导入OpenCV和NumPy库
import cv2
import numpy as np

# 读取图片文件
img = cv2.imread('./youhua.png')

# 定义四个点,这些点是图片中需要被变换的区域的四个角点
points1 = np.float32([
    [174,143],  # 左上角点
    [623,37],   # 右上角点
    [90,492],   # 左下角点
    [656,550]   # 右下角点
])

# 计算包围points1的最小外接矩形的四个角点
points2 = np.float32([
    [min(points1[:,0]),min(points1[:,1])],  # 左上角点
    [max(points1[:,0]),min(points1[:,1])],  # 右上角点
    [min(points1[:,0]),max(points1[:,1])],  # 左下角点
    [max(points1[:,0]),max(points1[:,1])]   # 右下角点
])

# 使用getPerspectiveTransform函数计算透视变换矩阵M
M = cv2.getPerspectiveTransform(points1, points2)

# 使用warpPerspective函数对图片进行透视变换
dst = cv2.warpPerspective(img, M, (img.shape[1], img.shape[0]))

# 计算变换后图片的最小外接矩形的坐标
min_x, min_y = points2.min(axis=0).astype(int)
max_x, max_y = points2.max(axis=0).astype(int)

# 根据最小外接矩形的坐标裁剪变换后的图片
cropped_dst = dst[min_y:max_y, min_x:max_x]

# 显示原始图片
cv2.imshow('img', img)

# 显示裁剪后的变换图片
cv2.imshow('cropped_dst', cropped_dst)

# 等待按键,0表示无限等待直到有按键按下
cv2.waitKey(0)

三、实验现象

相关推荐
大力财经7 分钟前
京东“月黑风高”超级盛典开放预约
人工智能
programhelp_24 分钟前
特斯拉 MLE 超详细面经 + 避坑
数据结构·人工智能·算法·面试·职场和发展
躺柒1 小时前
读人工智能全球格局:未来趋势与中国位势06人类的未来(下)
大数据·人工智能·算法·ai·智能
gorgeous(๑>؂<๑)1 小时前
【ICLR26-Oral Paper-Meta】DepthLM:基于视觉语言模型的度量深度
人工智能·计算机视觉·语言模型·自然语言处理
Dev7z1 小时前
当AI学会“听诊”:心肺听诊分析系统,正在悄悄改变医疗
人工智能
池央1 小时前
atvoss:AI 处理器上的智能语音与多媒体解决方案,赋能高效实时交互
人工智能·交互
码云数智-大飞2 小时前
小程序制作平台有哪些?SaaS小程序制作平台对比评测
大数据·人工智能
新缸中之脑2 小时前
Arduino AI手势识别系统
人工智能
码农小韩2 小时前
AIAgent应用开发——DeepSeek分析(二)
人工智能·python·深度学习·agent·强化学习·deepseek
ctrigger2 小时前
家和万事兴
大数据·人工智能·生活