OpenCV中的图片矫正

一、实验原理

基于计算机视觉中的透视变换(Perspective Transformation),也称为单应性(Homography)。透视变换是一种几何变换,用于将图像从一个平面映射到另一个平面,同时保持直线的直线性。这种变换在图像处理中非常有用,尤其是在图像校正、图像拼接、图像增强等领域。

二、实验代码

复制代码
# 导入OpenCV和NumPy库
import cv2
import numpy as np

# 读取图片文件
img = cv2.imread('./youhua.png')

# 定义四个点,这些点是图片中需要被变换的区域的四个角点
points1 = np.float32([
    [174,143],  # 左上角点
    [623,37],   # 右上角点
    [90,492],   # 左下角点
    [656,550]   # 右下角点
])

# 计算包围points1的最小外接矩形的四个角点
points2 = np.float32([
    [min(points1[:,0]),min(points1[:,1])],  # 左上角点
    [max(points1[:,0]),min(points1[:,1])],  # 右上角点
    [min(points1[:,0]),max(points1[:,1])],  # 左下角点
    [max(points1[:,0]),max(points1[:,1])]   # 右下角点
])

# 使用getPerspectiveTransform函数计算透视变换矩阵M
M = cv2.getPerspectiveTransform(points1, points2)

# 使用warpPerspective函数对图片进行透视变换
dst = cv2.warpPerspective(img, M, (img.shape[1], img.shape[0]))

# 计算变换后图片的最小外接矩形的坐标
min_x, min_y = points2.min(axis=0).astype(int)
max_x, max_y = points2.max(axis=0).astype(int)

# 根据最小外接矩形的坐标裁剪变换后的图片
cropped_dst = dst[min_y:max_y, min_x:max_x]

# 显示原始图片
cv2.imshow('img', img)

# 显示裁剪后的变换图片
cv2.imshow('cropped_dst', cropped_dst)

# 等待按键,0表示无限等待直到有按键按下
cv2.waitKey(0)

三、实验现象

相关推荐
珠海西格电力5 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
启途AI6 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_16 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
楚来客6 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
风送雨6 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦6 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
小和尚同志6 小时前
虽然 V0 很强大,但是ScreenshotToCode 依旧有市场
人工智能·aigc
HyperAI超神经6 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
芯盾时代6 小时前
石油化工行业网络风险解决方案
网络·人工智能·信息安全
线束线缆组件品替网6 小时前
Weidmüller 工业以太网线缆技术与兼容策略解析
网络·人工智能·电脑·硬件工程·材料工程